IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.2831.html
   My bibliography  Save this paper

Systemic risk and spatiotemporal dynamics of the US housing market

Author

Listed:
  • Hao Meng

    (ECUST)

  • Wen-Jie Xie

    (ECUST)

  • Zhi-Qiang Jiang

    (ECUST)

  • Boris Podobnik

    (BU and ZSEM)

  • Wei-Xing Zhou

    (ECUST)

  • H. Eugene Stanley

Abstract

Housing markets play a crucial role in economies and the collapse of a real-estate bubble usually destabilizes the financial system and causes economic recessions. We investigate the systemic risk and spatiotemporal dynamics of the US housing market (1975-2011) at the state level based on the Random Matrix Theory (RMT). We identify rich economic information in the largest eigenvalues deviating from RMT predictions and unveil that the component signs of the eigenvectors contain either geographical information or the extent of differences in house price growth rates or both. Our results show that the US housing market experienced six different regimes, which is consistent with the evolution of state clusters identified by the box clustering algorithm and the consensus clustering algorithm on the partial correlation matrices. Our analysis uncovers that dramatic increases in the systemic risk are usually accompanied with regime shifts, which provides a means of early detection of housing bubbles.

Suggested Citation

  • Hao Meng & Wen-Jie Xie & Zhi-Qiang Jiang & Boris Podobnik & Wei-Xing Zhou & H. Eugene Stanley, 2013. "Systemic risk and spatiotemporal dynamics of the US housing market," Papers 1306.2831, arXiv.org.
  • Handle: RePEc:arx:papers:1306.2831
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.2831
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leonidas Sandoval Junior, 2011. "Cluster formation and evolution in networks of financial market indices," Papers 1111.5069, arXiv.org.
    2. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    3. Pukthuanthong, Kuntara & Roll, Richard, 2009. "Global market integration: An alternative measure and its application," Journal of Financial Economics, Elsevier, vol. 94(2), pages 214-232, November.
    4. X. F. Jiang & B. Zheng, 2012. "Anti-correlation and subsector structure in financial systems," Papers 1201.6418, arXiv.org.
    5. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    8. Sanders, Anthony, 2008. "The subprime crisis and its role in the financial crisis," Journal of Housing Economics, Elsevier, vol. 17(4), pages 254-261, December.
    9. Quigley, John M., 2001. "Real Estate and the Asian Crisis," Journal of Housing Economics, Elsevier, vol. 10(2), pages 129-161, June.
    10. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    11. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    12. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    13. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    14. Raj Kumar Pan & Sitabhra Sinha, 2007. "Collective behavior of stock price movements in an emerging market," Papers 0704.0773, arXiv.org, revised Nov 2007.
    15. Bruno Giussani & George Hadjimatheou, 1991. "Modeling Regional House Prices In The United Kingdom," Papers in Regional Science, Wiley Blackwell, vol. 70(2), pages 201-219, April.
    16. Kim, Young Se & Rous, Jeffrey J., 2012. "House price convergence: Evidence from US state and metropolitan area panels," Journal of Housing Economics, Elsevier, vol. 21(2), pages 169-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Minggang & Tian, Lixin & Du, Ruijin, 2016. "Research on the interaction patterns among the global crude oil import dependency countries: A complex network approach," Applied Energy, Elsevier, vol. 180(C), pages 779-791.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    3. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    4. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    5. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    6. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    7. Fei Ren & Wei-Xing Zhou, 2014. "Dynamic Evolution of Cross-Correlations in the Chinese Stock Market," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.
    8. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    9. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    10. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    11. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    12. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    13. Thomas Lux & Duc Thi Luu & Boyan Yanovski, 2020. "An analysis of systemic risk in worldwide economic sentiment indices," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 909-928, November.
    14. Wang, Yanli & Li, Huajiao & Guan, Jianhe & Liu, Nairong, 2019. "Similarities between stock price correlation networks and co-main product networks: Threshold scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 66-77.
    15. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    16. Wang, Yan & Wang, Yue & Li, Ming-Xia, 2019. "Regional characteristics of sports industry profitability: Evidence from China’s province level data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 946-955.
    17. Yue-Hua Dai & Wen-Jie Xie & Zhi-Qiang Jiang & George J. Jiang & Wei-Xing Zhou, 2016. "Correlation structure and principal components in the global crude oil market," Empirical Economics, Springer, vol. 51(4), pages 1501-1519, December.
    18. Chakrabarti, Arnab & Chakrabarti, Anindya S., 2020. "Fractional Differencing: (In)stability of Spectral Structure and Risk Measures of Financial Networks," IIMA Working Papers WP 2020-07-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    19. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    20. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.2831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.