IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v516y2019icp66-77.html
   My bibliography  Save this article

Similarities between stock price correlation networks and co-main product networks: Threshold scenarios

Author

Listed:
  • Wang, Yanli
  • Li, Huajiao
  • Guan, Jianhe
  • Liu, Nairong

Abstract

Because of the high yields and high risks associated with the stock market, investors can hold diversified portfolios with low relativity of stocks to reduce unsystematic risk. The current literature analyzes single factors affecting the relativity of stocks, but in this paper, we analyze the correlations between different factors to provide multiple perspectives of and about investment portfolios. This study analyzes the relationships between the similarities of the main products of listed companies and the varying degrees of correlations of stock price by examining different threshold scenarios of the energy industry between 2012 and 2016 and then constructing stock price correlation threshold networks and co-main product networks to analyze the similarities in their structures. The results indicate that two factors are significantly correlated in 97.5% of the scenarios and that these factors are the most strongly correlated when the threshold is between 0.5 and 0.7. The two networks exhibit a high degree of similarity in degree, weighted degree and community division. Main product similarity, used as supplementary information for stock relativity research, plays a role similar to stock price correlations in certain scenarios. Furthermore, compared with stock price correlations, the similarity of main products is simpler and more intuitive. This paper proposes a new method to study stock relativity based on different threshold scenarios; thus, it could serve as a reference for investors when developing portfolio strategies from multiple perspectives.

Suggested Citation

  • Wang, Yanli & Li, Huajiao & Guan, Jianhe & Liu, Nairong, 2019. "Similarities between stock price correlation networks and co-main product networks: Threshold scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 66-77.
  • Handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:66-77
    DOI: 10.1016/j.physa.2018.09.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312743
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yue-Hua Dai & Wen-Jie Xie & Zhi-Qiang Jiang & George J. Jiang & Wei-Xing Zhou, 2016. "Correlation structure and principal components in the global crude oil market," Empirical Economics, Springer, vol. 51(4), pages 1501-1519, December.
    2. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    3. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    4. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. El Alaoui, Marwane, 2015. "Random matrix theory and portfolio optimization in Moroccan stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 92-99.
    8. Li-Ling Su & Xiong-Fei Jiang & Sai-Ping Li & Li-Xin Zhong & Fei Ren, 2017. "Dynamic structure of stock communities: a comparative study between stock returns and turnover rates," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(7), pages 1-16, July.
    9. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    10. Guangxi Cao & Yingying Shi & Qingchen Li, 2017. "Structure Characteristics of the International Stock Market Complex Network in the Perspective of Whole and Part," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-11, March.
    11. Oh, Gabjin, 2014. "Grouping characteristics of industry sectors in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 261-268.
    12. An, Feng & Gao, Xiangyun & Guan, Jianhe & Li, Huajiao & Liu, Qian, 2016. "An evolution analysis of executive-based listed company relationships using complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 276-285.
    13. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2010. "Cross-correlations between Chinese A-share and B-share markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5468-5478.
    14. Rea, Alethea & Rea, William, 2014. "Visualization of a stock market correlation matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 109-123.
    15. Boubaker, Sabri & Mansali, Hatem & Rjiba, Hatem, 2014. "Large controlling shareholders and stock price synchronicity," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 80-96.
    16. Mensi, Walid & Hammoudeh, Shawkat & Kang, Sang Hoon, 2017. "Dynamic linkages between developed and BRICS stock markets: Portfolio risk analysis," Finance Research Letters, Elsevier, vol. 21(C), pages 26-33.
    17. Jenna Birch & Athanasios A. Pantelous & Kimmo Soramäki, 2016. "Analysis of Correlation Based Networks Representing DAX 30 Stock Price Returns," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 501-525, April.
    18. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    19. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    20. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    21. Yusuf Yargı BAYDİLLİ & Şafak BAYIR & İlker TÜRKER, 2017. "A Hierarchical View of a National Stock Market as a Complex Network," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 205-222.
    22. Gul, Ferdinand A. & Kim, Jeong-Bon & Qiu, Annie A., 2010. "Ownership concentration, foreign shareholding, audit quality, and stock price synchronicity: Evidence from China," Journal of Financial Economics, Elsevier, vol. 95(3), pages 425-442, March.
    23. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    24. Yang, Chunxia & Zhu, Xueshuai & Li, Qian & Chen, Yanhua & Deng, Qiangqiang, 2014. "Research on the evolution of stock correlation based on maximal spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 1-18.
    25. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    26. Fei Ren & Ya-Nan Lu & Sai-Ping Li & Xiong-Fei Jiang & Li-Xin Zhong & Tian Qiu, 2017. "Dynamic Portfolio Strategy Using Clustering Approach," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    27. Chen, Kun & Luo, Peng & Sun, Bianxia & Wang, Huaiqing, 2015. "Which stocks are profitable? A network method to investigate the effects of network structure on stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 224-235.
    28. Radhakrishnan, Srinivasan & Duvvuru, Arjun & Sultornsanee, Sivarit & Kamarthi, Sagar, 2016. "Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 259-270.
    29. Chan, Kalok & Hameed, Allaudeen, 2006. "Stock price synchronicity and analyst coverage in emerging markets," Journal of Financial Economics, Elsevier, vol. 80(1), pages 115-147, April.
    30. Dasgupta, Sudipto & Gan, Jie & Gao, Ning, 2010. "Transparency, Price Informativeness, and Stock Return Synchronicity: Theory and Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(5), pages 1189-1220, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocco Caferra & Pasquale Marcello Falcone & Andrea Morone & Piergiuseppe Morone, 2022. "Is COVID-19 anticipating the future? Evidence from investors’ sustainable orientation," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(1), pages 177-196, March.
    2. Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    3. Huang, Qi-An & Zhao, Jun-Chan & Wu, Xiao-Qun, 2022. "Financial risk propagation between Chinese and American stock markets based on multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    2. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    3. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    5. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    6. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    7. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    8. Lu, Ya-Nan & Li, Sai-Ping & Zhong, Li-Xin & Jiang, Xiong-Fei & Ren, Fei, 2018. "A clustering-based portfolio strategy incorporating momentum effect and market trend prediction," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 1-15.
    9. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    10. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    11. Bilal Ahmed Memon & Hongxing Yao & Rabia Tahir, 2020. "General election effect on the network topology of Pakistan’s stock market: network-based study of a political event," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    12. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    13. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    14. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.
    15. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    16. Hongxing Yao & Yanyu Lu & Bilal Ahmed Memon, 2019. "Impact of US-China Trade War on the Network Topology Structure of Chinese Stock Market," Journal of Asian Business Strategy, Asian Economic and Social Society, vol. 9(2), pages 235-250, December.
    17. Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2017. "Statistical Procedures for Stock Markets Network Structures Identification," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 33-52.
    18. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    19. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    20. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:66-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.