IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.1380.html
   My bibliography  Save this paper

Forecasting Value-at-Risk with Time-Varying Variance, Skewness and Kurtosis in an Exponential Weighted Moving Average Framework

Author

Listed:
  • A. Gabrielsen
  • P. Zagaglia
  • A. Kirchner
  • Z. Liu

Abstract

This paper provides an insight to the time-varying dynamics of the shape of the distribution of financial return series by proposing an exponential weighted moving average model that jointly estimates volatility, skewness and kurtosis over time using a modified form of the Gram-Charlier density in which skewness and kurtosis appear directly in the functional form of this density. In this setting VaR can be described as a function of the time-varying higher moments by applying the Cornish-Fisher expansion series of the first four moments. An evaluation of the predictive performance of the proposed model in the estimation of 1-day and 10-day VaR forecasts is performed in comparison with the historical simulation, filtered historical simulation and GARCH model. The adequacy of the VaR forecasts is evaluated under the unconditional, independence and conditional likelihood ratio tests as well as Basel II regulatory tests. The results presented have significant implications for risk management, trading and hedging activities as well as in the pricing of equity derivatives.

Suggested Citation

  • A. Gabrielsen & P. Zagaglia & A. Kirchner & Z. Liu, 2012. "Forecasting Value-at-Risk with Time-Varying Variance, Skewness and Kurtosis in an Exponential Weighted Moving Average Framework," Papers 1206.1380, arXiv.org.
  • Handle: RePEc:arx:papers:1206.1380
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.1380
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    2. Anders Wilhelmsson, 2009. "Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 82-104, March.
    3. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Sverre Grepperud & Pål Andreas Pedersen, 2006. "Crowding Effects and Work Ethics," LABOUR, CEIS, vol. 20(1), pages 125-138, March.
    6. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    7. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    8. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    9. Hashmi, Aamir R. & Tay, Anthony S., 2007. "Global regional sources of risk in equity markets: Evidence from factor models with time-varying conditional skewness," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 430-453, April.
    10. Esther B. Del Brio & Trino-Manuel Niguez & Javier Perote, 2009. "Gram-Charlier densities: a multivariate approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 855-868.
    11. Alizadeh, Amir H. & Gabrielsen, Alexandros, 2013. "Dynamics of credit spread moments of European corporate bond indexes," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3125-3144.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    14. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    15. Vinayagamoorthy A. & Sankar C., 2012. "Mobile Banking –An Overview," Advances In Management, Advances in Management, vol. 5(10), October.
    16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    17. Bera, Anil K. & Kim, Sangwhan, 2002. "Testing constancy of correlation and other specifications of the BGARCH model with an application to international equity returns," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 171-195, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Cao, 2017. "How does the underlying affect the risk-return profiles of structured products?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(1), pages 27-47, February.
    2. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    3. Huang, Zhuo & Liang, Fang & Wang, Tianyi & Li, Chao, 2021. "Modeling dynamic higher moments of crude oil futures," Finance Research Letters, Elsevier, vol. 39(C).
    4. Kim-Hung Pho & Ngoc-Hien Nguyen & Huu-Nhan Huynh & Wing-Keung Wong, 2021. "A Detailed Guide on How to Use Statistical Software R for Text Mining," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(3), pages 92-110, September.
    5. León, Ángel & Ñíguez, Trino-Manuel, 2021. "The transformed Gram Charlier distribution: Parametric properties and financial risk applications," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 323-349.
    6. Wentao Hu, 2019. "calculation worst-case Value-at-Risk prediction using empirical data under model uncertainty," Papers 1908.00982, arXiv.org.
    7. Radu Lupu, 2014. "Simultaneity of Tail Events for Dynamic Conditional Distributions of Stock Market Index Returns," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 49-64, December.
    8. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    9. Zoran Ivanovski & Zoran Narasanov & Nadica Ivanovska, 2015. "Volatility And Kurtosis At Emerging Markets: Comparative Analysis Of Macedonian Stock Exchange And Six Stock Markets From Central And Eastern Europe," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 9(1), pages 84-93.
    10. Ivanovski, Zoran & Stojanovski, Toni & Narasanov, Zoran, 2015. "Volatility And Kurtosis Of Daily Stock Returns At Mse," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 6(2), pages 209-221.
    11. Massimiliano Frezza & Sergio Bianchi & Augusto Pianese, 2022. "Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process," Computational Management Science, Springer, vol. 19(1), pages 99-132, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    2. Alizadeh, Amir H. & Gabrielsen, Alexandros, 2013. "Dynamics of credit spread moments of European corporate bond indexes," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3125-3144.
    3. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    4. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    5. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    9. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    10. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    11. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    12. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    13. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    14. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    16. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    17. Hou, Yang (Greg) & Li, Steven, 2020. "Volatility and skewness spillover between stock index and stock index futures markets during a crash period: New evidence from China," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 166-188.
    18. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    19. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    20. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.1380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.