IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2009007.html
   My bibliography  Save this paper

Design and analysis of industrial strip-plot experiments

Author

Listed:
  • ARNOUTS, Heidi
  • GOOS, Peter

Abstract

The cost of experimentation can often be reduced by forgoing complete randomization. A well-known design with restricted randomization is a split-plot design, which is commonly used in industry when some experimental factors are harder to change than others or when a two-stage production process is studied. Split-plot designs are also often used in robust product design to develop products that are insensitive to environmental or noise factors. Another, lesser known, type of experimental design plan that can be used in such situations is the strip-plot experimental design. Strip-plot designs are economically attractive in situations where the factors are hard to change and the process under investigation consists of two distinct stages, and where it is possible to apply the second stage to groups of semi-finished products from the first stage. They have a correlation structure similar to row-column designs and can be seen as special cases of split-lot designs. In this paper, we show how optimal design of experiments allows for the creation of a broad range of strip-plot designs.

Suggested Citation

  • ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2009007
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/129464/aaaea8c9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goos, P. & Donev, A.N., 2006. "Blocking response surface designs," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1075-1088, November.
    2. Eric Schoen, 1999. "Designing fractional two-level experiments with nested error structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 495-508.
    3. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    4. Bradley Jones & Peter Goos, 2007. "A candidate‐set‐free algorithm for generating D‐optimal split‐plot designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 347-364, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    2. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    3. Loeza-Serrano, S. & Donev, A.N., 2014. "Construction of experimental designs for estimating variance components," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1168-1177.
    4. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Business and Economics.
    5. Alexandre Bohyn & Eric D. Schoen & Chee Ping Ng & Kristina Bishard & Manon Haarmans & Sebastian J. Trietsch & Peter Goos, 2024. "Design and Analysis of a Microplate Assay in the Presence of Multiple Restrictions on the Randomization," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 745-765, December.
    6. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    7. Xiaoxue Han & Jianbin Chen & Min-Qian Liu & Shengli Zhao, 2020. "Asymmetrical split-plot designs with clear effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 779-798, October.
    8. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    9. Moein Saleh & Ming-Hung Kao & Rong Pan, 2017. "Design D-optimal event-related functional magnetic resonance imaging experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 73-91, January.
    10. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    11. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    12. Kalliopi Mylona & Harrison Macharia & Peter Goos, 2013. "Three-level equivalent-estimation split-plot designs based on subset and supplementary difference set designs," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1153-1165.
    13. Rodney N. Edmondson, 2020. "Multi-level Block Designs for Comparative Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 500-522, December.
    14. Nha Vo-Thanh & Peter Goos & Eric D. Schoen, 2020. "Integer programming approaches to find row–column arrangements of two-level orthogonal experimental designs," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 780-796, July.
    15. Georgiou, Stelios D. & Stylianou, Stella & Aggarwal, Manohar, 2014. "A class of composite designs for response surface methodology," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1124-1133.
    16. Murat Kulahci & John Tyssedal, 2017. "Split-plot designs for multistage experimentation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 493-510, February.
    17. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    18. Peter Goos, 2006. "Optimal versus orthogonal and equivalent‐estimation design of blocked and split‐plot experiments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(3), pages 361-378, August.
    19. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.
    20. Eugene C. Ukaegbu & Polycarp E. Chigbu, 2017. "Evaluation of Orthogonally Blocked Central Composite Designs with Partial Replications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 112-141, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2009007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.