IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v77y2009i3p415-429.html
   My bibliography  Save this article

Randomization in the Design of Experiments

Author

Listed:
  • D. R. Cox

Abstract

A general review is given of the role of randomization in experimental design. Three objectives are distinguished, the avoidance of bias, the establishment of a secure base for the estimation of error in traditional designs, and the provision of formally exact tests of significance and confidence limits. The approximate randomization theory associated with analysis of covariance is outlined and conditionality considerations are used to explain the limited role of randomization in experiments with very small numbers of experimental units. The relation between the so‐called design‐based and model‐based analyses is discussed. Corresponding results in sampling theory are mentioned briefly. On passe en revue le rôle du traitement aléatoire dans la conception d'expériences. On distingue trois objectifs, la prévention de biais, la constitution d'une base solide pour l'estimation d'erreur dans les conceptions traditionnelles et la fourniture de tests formellement exacts de signification et de limites de confiance. La théorie du traitement aléatoire approximatif associéà l'analyse de covariance est présentée et des considérations de conditionnalité sont utilisées pour expliquer le rôle limité du traitement aléatoire dans les expériences avec de tròs petits nombres d'unités expérimentales. La relation entre les analyses dites à base de conception et à base de modòle est discutée. Les résultats correspondants dans la théorie des sondages sont briòvement mentionnés.

Suggested Citation

  • D. R. Cox, 2009. "Randomization in the Design of Experiments," International Statistical Review, International Statistical Institute, vol. 77(3), pages 415-429, December.
  • Handle: RePEc:bla:istatr:v:77:y:2009:i:3:p:415-429
    DOI: 10.1111/j.1751-5823.2009.00084.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2009.00084.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2009.00084.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. Brien & R. A. Bailey, 2006. "Multiple randomizations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 571-609, September.
    2. Anthony C. Atkinson, 2002. "The comparison of designs for sequential clinical trials with covariate information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 349-373, June.
    3. Jean-François Beaumont, 2008. "A new approach to weighting and inference in sample surveys," Biometrika, Biometrika Trust, vol. 95(3), pages 539-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kari Lock Morgan & Donald B. Rubin, 2015. "Rerandomization to Balance Tiers of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1412-1421, December.
    2. Jesse Hemerik & Jelle J. Goeman, 2021. "Another Look at the Lady Tasting Tea and Differences Between Permutation Tests and Randomisation Tests," International Statistical Review, International Statistical Institute, vol. 89(2), pages 367-381, August.
    3. Pashley Nicole E. & Basse Guillaume W. & Miratrix Luke W., 2021. "Conditional as-if analyses in randomized experiments," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 264-284, January.
    4. Elena Pesce & Fabio Rapallo & Eva Riccomagno & Henry P. Wynn, 2023. "Generation of all randomizations using circuits," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 683-704, August.
    5. Emlyn R. Williams & Hans-Peter Piepho, 2018. "An Evaluation of Error Variance Bias in Spatial Designs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 83-91, March.
    6. Zhenzhen Xu & John D. Kalbfleisch, 2013. "Repeated Randomization and Matching in Multi-Arm Trials," Biometrics, The International Biometric Society, vol. 69(4), pages 949-959, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiteras, Raymond P. & Levine, David I. & Polley, Thomas H., 2016. "The pursuit of balance in sequential randomized trials," Development Engineering, Elsevier, vol. 1(C), pages 12-25.
    2. A. Sikov & J. M. Stern, 2019. "Application of the full Bayesian significance test to model selection under informative sampling," Statistical Papers, Springer, vol. 60(1), pages 89-104, February.
    3. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.
    4. Nikhil Bhat & Vivek F. Farias & Ciamac C. Moallemi & Deeksha Sinha, 2020. "Near-Optimal A-B Testing," Management Science, INFORMS, vol. 66(10), pages 4477-4495, October.
    5. Daniel Bonnéry & F. Jay Breidt & François Coquet, 2017. "Kernel estimation for a superpopulation probability density function under informative selection," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 301-318, December.
    6. Danutė Krapavickaitė, 2022. "Impact of Stratum Composition Changes on the Accuracy of the Estimates in a Sample Survey," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    7. Ramón Ferri-García & Jean-François Beaumont & Keven Bosa & Joanne Charlebois & Kenneth Chu, 2022. "Weight smoothing for nonprobability surveys," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 619-643, September.
    8. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    9. Lingxiao Wang & Barry I. Graubard & Hormuzd A. Katki & and Yan Li, 2020. "Improving external validity of epidemiologic cohort analyses: a kernel weighting approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1293-1311, June.
    10. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 297-310.
    11. Ivan Faiella, 2010. "The use of survey weights in regression analysis," Temi di discussione (Economic working papers) 739, Bank of Italy, Economic Research and International Relations Area.
    12. Atkinson, Anthony C. & Duarte, Belmiro P.M. & Pedrosa, David & van Munster, Marlena, 2023. "Randomizing a clinical trial in neuro-degenerative disease," LSE Research Online Documents on Economics 118653, London School of Economics and Political Science, LSE Library.
    13. Belmiro P. M. Duarte & Anthony C. Atkinson & David Pedrosa & Marlena van Munster, 2024. "Compound Optimum Designs for Clinical Trials in Personalized Medicine," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    14. Heng Chen & Rallye Shen, 2017. "The Bank of Canada 2015 Retailer Survey on the Cost of Payment Methods: Calibration for Single-Location Retailers," Technical Reports 109, Bank of Canada.
    15. Alessio Guandalini & Claudio Ceccarelli, 2022. "Impact measurement and dimension reduction of auxiliary variables in calibration estimator using the Shapley decomposition," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 759-784, October.
    16. Anthony C. Atkinson & Atanu Biswas, 2005. "Bayesian Adaptive Biased-Coin Designs for Clinical Trials with Normal Responses," Biometrics, The International Biometric Society, vol. 61(1), pages 118-125, March.
    17. Wei Zhang & Zhiwei Zhang & Aiyi Liu, 2023. "Optimizing treatment allocation in randomized clinical trials by leveraging baseline covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 2815-2829, December.
    18. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    19. Jeremy Seeman & Yajuan Si & Jerome P. Reiter, 2024. "Differentially Private Population Quantity Estimates via Survey Weight Regularization," NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences, National Bureau of Economic Research, Inc.
    20. Richard G. Jarrett & Katya Ruggiero, 2008. "Design and Analysis of Two-Phase Experiments for Gene Expression Microarrays—Part I," Biometrics, The International Biometric Society, vol. 64(1), pages 208-216, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:77:y:2009:i:3:p:415-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.