IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v201y2025ics0167947324001129.html
   My bibliography  Save this article

Optimal splitk-plot designs

Author

Listed:
  • Born, Mathias
  • Goos, Peter

Abstract

Completely randomized designs are often infeasible due to the hard-to-change nature of one or more experimental factors. In those cases, restrictions are imposed on the order of the experimental tests. The resulting experimental designs are often split-plot or split-split-plot designs in which the levels of certain hard-to-change factors are varied only a limited number of times. In agricultural machinery optimization, the number of hard-to-change factors is so large and the available time for experimentation is so short that split-plot or split-split-plot designs are infeasible as well. The only feasible kinds of designs are generalizations of split-split-plot designs, which are referred to as splitk-designs, where k is larger than 2. The coordinate-exchange algorithm is extended to construct optimal splitk-plot designs and the added value of the algorithm is demonstrated by applying it to an experiment involving a self propelled forage harvester. The optimal design generated using the extended algorithm is substantially more efficient than the design that was actually used. Update formulas for the determinant and the inverse of the information matrix speed up the coordinate-exchange algorithm, making it feasible for large designs.

Suggested Citation

  • Born, Mathias & Goos, Peter, 2025. "Optimal splitk-plot designs," Computational Statistics & Data Analysis, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:csdana:v:201:y:2025:i:c:s0167947324001129
    DOI: 10.1016/j.csda.2024.108028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001129
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Schoen, 1999. "Designing fractional two-level experiments with nested error structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 495-508.
    2. D. R. Bingham & E. D. Schoen & R. R. Sitter, 2005. "Corrigendum: Designing fractional factorial split‐plot experiments with few whole‐plot factors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(5), pages 955-958, November.
    3. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    4. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    5. D. R. Bingham & E. D. Schoen & R. R. Sitter, 2004. "Designing fractional factorial split‐plot experiments with few whole‐plot factors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 325-339, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    2. Alexandre Bohyn & Eric D. Schoen & Chee Ping Ng & Kristina Bishard & Manon Haarmans & Sebastian J. Trietsch & Peter Goos, 2024. "Design and Analysis of a Microplate Assay in the Presence of Multiple Restrictions on the Randomization," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 745-765, December.
    3. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    4. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    5. Murat Kulahci & John Tyssedal, 2017. "Split-plot designs for multistage experimentation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 493-510, February.
    6. ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
    7. Yang, Jianfeng & Zhang, Runchu & Liu, Minqian, 2007. "Construction of fractional factorial split-plot designs with weak minimum aberration," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1567-1573, September.
    8. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    9. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Business and Economics.
    10. K. Chatterjee & C. Koukouvinos, 2021. "Construction of mixed-level supersaturated split-plot designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 949-967, October.
    11. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    12. Minyang Hu & Shengli Zhao, 2022. "Minimum Aberration Split-Plot Designs Focusing on the Whole Plot Factors," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
    13. ARNOUTS, Heidi & GOOS, Peter, 2008. "Staggered designs for experiments with more than one hard-to-change factor," Working Papers 2008018, University of Antwerp, Faculty of Business and Economics.
    14. Loeza-Serrano, S. & Donev, A.N., 2014. "Construction of experimental designs for estimating variance components," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1168-1177.
    15. Lin, Chang-Yun & Yang, Po, 2019. "Data-driven multistratum designs with the generalized Bayesian D-D criterion for highly uncertain models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 222-238.
    16. K. Chatterjee & C. Koukouvinos & K. Mylona, 2020. "Construction of supersaturated split-plot designs," Statistical Papers, Springer, vol. 61(5), pages 2203-2219, October.
    17. Xiaoxue Han & Jianbin Chen & Min-Qian Liu & Shengli Zhao, 2020. "Asymmetrical split-plot designs with clear effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 779-798, October.
    18. CUERVO, Daniel Palhazi & GOOS, Peter & SÖRENSEN, Kenneth, 2013. "An iterated local search algorithm for the construction of large scale D-optimal experimental designs," Working Papers 2013006, University of Antwerp, Faculty of Business and Economics.
    19. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    20. Steven G. Gilmour & Peter Goos, 2009. "Analysis of data from non‐orthogonal multistratum designs in industrial experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 467-484, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:201:y:2025:i:c:s0167947324001129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.