IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i5d10.1007_s00362-018-1028-7.html
   My bibliography  Save this article

Construction of supersaturated split-plot designs

Author

Listed:
  • K. Chatterjee

    (Visva-Bharati University)

  • C. Koukouvinos

    (National Technical University of Athens)

  • K. Mylona

    (King’s College London
    University Carlos III de Madrid)

Abstract

We propose a combinatorial construction method for setting up informative experiments with both restricted randomisation and a large number of factors. The supersaturated split-plot designs are very useful in screening situations where the number of factors is larger than the number of available observations and several of these factors have levels that they are hard to change. The construction method is based on compound orthogonal arrays. We evaluate the constructed designs using an optimality criterion and we provide a lower bound for this criterion.

Suggested Citation

  • K. Chatterjee & C. Koukouvinos & K. Mylona, 2020. "Construction of supersaturated split-plot designs," Statistical Papers, Springer, vol. 61(5), pages 2203-2219, October.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:5:d:10.1007_s00362-018-1028-7
    DOI: 10.1007/s00362-018-1028-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-1028-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-1028-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Are Aastveit & Trygve Almøy & Iwona Mejza & Stanislaw Mejza, 2009. "Individual control treatment in split-plot experiments," Statistical Papers, Springer, vol. 50(4), pages 697-710, August.
    2. D. R. Bingham & E. D. Schoen & R. R. Sitter, 2004. "Designing fractional factorial split‐plot experiments with few whole‐plot factors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 325-339, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Chatterjee & C. Koukouvinos, 2021. "Construction of mixed-level supersaturated split-plot designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 949-967, October.
    2. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    3. Murat Kulahci & John Tyssedal, 2017. "Split-plot designs for multistage experimentation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 493-510, February.
    4. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    5. Yang, Jianfeng & Zhang, Runchu & Liu, Minqian, 2007. "Construction of fractional factorial split-plot designs with weak minimum aberration," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1567-1573, September.
    6. Minyang Hu & Shengli Zhao, 2022. "Minimum Aberration Split-Plot Designs Focusing on the Whole Plot Factors," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
    7. ARNOUTS, Heidi & GOOS, Peter, 2008. "Staggered designs for experiments with more than one hard-to-change factor," Working Papers 2008018, University of Antwerp, Faculty of Business and Economics.
    8. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    9. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    10. Steven G. Gilmour & Peter Goos, 2009. "Analysis of data from non‐orthogonal multistratum designs in industrial experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 467-484, September.
    11. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:5:d:10.1007_s00362-018-1028-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.