Nonparametric estimation of multivariate extreme-value copulas
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
- Kojadinovic, Ivan & Yan, Jun, 2010. "Nonparametric rank-based tests of bivariate extreme-value dependence," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2234-2249, October.
- Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Other publications TiSEM 3e837d24-e733-407c-bfaa-f, Tilburg University, School of Economics and Management.
- Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of an extreme-value copula in arbitrary dimensions," LIDAM Reprints ISBA 2011003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Deheuvels, Paul, 1991. "On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 429-439, November.
- Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
- Jiménez, Javier Rojo & Villa-Diharce, Enrique & Flores, Miguel, 2001. "Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 159-191, February.
- Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of an extreme-value copula in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 37-47, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Segers, Johan, 2012. "Nonparametric inference for max-stable dependence : Discussion of "Statistical Modelling of Spatial Extremes" by A. C. Davison, S. Padoan and M. Ribatet, to appear in Statistical Science," LIDAM Discussion Papers ISBA 2012012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
- Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Fils-Villetard, A. & Guillou, A. & Segers, J., 2005. "Projection Estimates of Constrained Functional Parameters," Discussion Paper 2005-111, Tilburg University, Center for Economic Research.
- Fils-Villetard, A. & Guillou, A. & Segers, J., 2005. "Projection Estimates of Constrained Functional Parameters," Other publications TiSEM fe25c070-c313-4369-a6a5-8, Tilburg University, School of Economics and Management.
- Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of an extreme-value copula in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 37-47, January.
- Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
- Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
- Falk, Michael & Reiss, Rolf-Dieter, 2005. "On the distribution of Pickands coordinates in bivariate EV and GP models," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 267-295, April.
- Papastathopoulos, Ioannis & Tawn, Jonathan A., 2014. "Dependence properties of multivariate max-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 134-140.
- Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
- Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
- Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Other publications TiSEM 3e837d24-e733-407c-bfaa-f, Tilburg University, School of Economics and Management.
- Dutfoy Anne & Parey Sylvie & Roche Nicolas, 2014. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-19, June.
- Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
- Bernhart German & Mai Jan-Frederik & Scherer Matthias, 2015. "On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, May.
- Jean-François Quessy, 2021. "On nonparametric tests of multivariate meta-ellipticity," Statistical Papers, Springer, vol. 62(5), pages 2283-2310, October.
- Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
- Yeting Du & Johanna Nešlehová, 2013. "A moment-based test for extreme-value dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 673-695, July.
- Kojadinovic, Ivan, 2017. "Some copula inference procedures adapted to the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 24-41.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2011018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.