IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v93y2005i2p267-295.html
   My bibliography  Save this article

On the distribution of Pickands coordinates in bivariate EV and GP models

Author

Listed:
  • Falk, Michael
  • Reiss, Rolf-Dieter

Abstract

Let (U,V) be a random vector with U[less-than-or-equals, slant]0, V[less-than-or-equals, slant]0. The random variables Z=V/(U+V), C=U+V are the Pickands coordinates of (U,V). They are a useful tool for the investigation of the tail behavior in bivariate peaks-over-threshold models in extreme value theory. We compute the distribution of (Z,C) among others under the assumption that the distribution function H of (U,V) is in a smooth neighborhood of a generalized Pareto distribution (GP) with uniform marginals. It turns out that if H is a GP, then Z and C are independent, conditional on C>c[greater-or-equal, slanted]-1. These results are used to derive approximations of the empirical point process of the exceedances (Zi,Ci) with Ci>c in an iid sample of size n. Local asymptotic normality is established for the approximating point process in a parametric model, where c=c(n)[short up arrow]0 as n-->[infinity].

Suggested Citation

  • Falk, Michael & Reiss, Rolf-Dieter, 2005. "On the distribution of Pickands coordinates in bivariate EV and GP models," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 267-295, April.
  • Handle: RePEc:eee:jmvana:v:93:y:2005:i:2:p:267-295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00035-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falk, Michael & Reiss, Rolf-Dieter, 2003. "Efficient estimators and LAN in canonical bivariate POT models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 190-207, January.
    2. Deheuvels, Paul, 1991. "On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 429-439, November.
    3. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    4. de Oliveira, J. Tiago, 1989. "Intrinsic estimation of the dependence structure for bivariate extremes," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 213-218, August.
    5. Marohn F., 1999. "Local Asymptotic Normality Of Truncation Models," Statistics & Risk Modeling, De Gruyter, vol. 17(3), pages 237-254, March.
    6. Falk, Michael & Reiss, Rolf Dieter, 2002. "A characterization of the rate of convergence in bivariate extreme value models," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 341-351, October.
    7. Jiménez, Javier Rojo & Villa-Diharce, Enrique & Flores, Miguel, 2001. "Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 159-191, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frick, Melanie & Reiss, Rolf-Dieter, 2009. "Expansions of multivariate Pickands densities and testing the tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1168-1181, July.
    2. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    2. Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
    3. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
    4. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    5. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Other publications TiSEM 3e837d24-e733-407c-bfaa-f, Tilburg University, School of Economics and Management.
    6. Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of an extreme-value copula in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 37-47, January.
    7. Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of multivariate extreme-value copulas," LIDAM Discussion Papers ISBA 2011018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Fils-Villetard, A. & Guillou, A. & Segers, J., 2005. "Projection Estimates of Constrained Functional Parameters," Discussion Paper 2005-111, Tilburg University, Center for Economic Research.
    9. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    10. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    12. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    13. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Falk, Michael & Marohn, Frank, 2000. "On the Loss of Information Due to Nonrandom Truncation," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 1-21, January.
    15. René Michel, 2009. "Parametric Estimation Procedures in Multivariate Generalized Pareto Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 60-75, March.
    16. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    17. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2014. "Dependence properties of multivariate max-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 134-140.
    18. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    19. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    20. Einmahl, J.H.J. & Segers, J.J.J., 2008. "Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution," Discussion Paper 2008-42, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:93:y:2005:i:2:p:267-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.