IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v2y2014i1p19n3.html
   My bibliography  Save this article

Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology

Author

Listed:
  • Dutfoy Anne

    (EDF R&D, 1, avenue du Général de Gaulle, 92141 CLAMART Cedex, France)

  • Parey Sylvie

    (EDF R&D, 6 quai Watier, 78401 Chatou Cedex, France)

  • Roche Nicolas

    (EDF R&D, 6 quai Watier, 78401 Chatou Cedex, France)

Abstract

In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.

Suggested Citation

  • Dutfoy Anne & Parey Sylvie & Roche Nicolas, 2014. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-19, June.
  • Handle: RePEc:vrs:demode:v:2:y:2014:i:1:p:19:n:3
    DOI: 10.2478/demo-2014-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/demo-2014-0003
    Download Restriction: no

    File URL: https://libkey.io/10.2478/demo-2014-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Guttorp & Stephan R. Sain & Christopher K. Wikle & Grant B. Weller & Daniel S. Cooley & Stephan R. Sain, 2012. "An investigation of the pineapple express phenomenon via bivariate extreme value theory," Environmetrics, John Wiley & Sons, Ltd., vol. 23(5), pages 420-439, August.
    2. Deheuvels, Paul, 1991. "On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 429-439, November.
    3. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    4. Debbie Dupuis & Bruce Jones, 2006. "Multivariate Extreme Value Theory And Its Usefulness In Understanding Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 1-27.
    5. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    6. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    7. Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
    8. Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
    9. T.A. Buishand, 1989. "Statistics of extremes in climatology," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 43(1), pages 1-30, March.
    10. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kellner, Ralf & Gatzert, Nadine, 2013. "Estimating the basis risk of index-linked hedging strategies using multivariate extreme value theory," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4353-4367.
    2. Yong Ma & Zhengjun Zhang & Weiguo Zhang & Weidong Xu, 2015. "Evaluating the Default Risk of Bond Portfolios with Extreme Value Theory," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 647-668, April.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    5. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    7. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    8. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2014. "Dependence properties of multivariate max-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 134-140.
    9. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    10. Huang, Wei & Liu, Qianqiu & Ghon Rhee, S. & Wu, Feng, 2012. "Extreme downside risk and expected stock returns," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1492-1502.
    11. Aboura, Sofiane & Wagner, Niklas, 2016. "Extreme asymmetric volatility: Stress and aggregate asset prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 47-59.
    12. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.
    13. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
    14. Yongzhao Chen & Ka Chun Cheung & Sheung Chi Phillip Yam & Fei Lung Yuen & Jia Zeng, 2023. "On the Diversification Effect in Solvency II for Extremely Dependent Risks," Risks, MDPI, vol. 11(8), pages 1-22, August.
    15. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    17. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    18. Viviana Fernández, 2006. "Extremal dependence in European capital markets," Journal of Applied Economics, Universidad del CEMA, vol. 9, pages 275-293, November.
    19. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Other publications TiSEM 3e837d24-e733-407c-bfaa-f, Tilburg University, School of Economics and Management.
    20. Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of an extreme-value copula in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 37-47, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:2:y:2014:i:1:p:19:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.