IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332639.html
   My bibliography  Save this paper

The Impact of Advanced Biofuels on Aviation Emissions and Operations in the U.S

Author

Listed:
  • Winchester, Niven
  • Malina, Robert
  • Staples, Mark
  • Barrett, Steven

Abstract

We analyze the economic and emissions impacts on U.S. commercial aviation of the Federal Aviation Administration’s renewable jet fuel goal when met using advanced fermentation (AF) fuel from perennial grasses. These fuels have recently been certified for use in aircraft and could potentially provide greater environmental benefits than aviation biofuels approved previously. Due to uncertainties in the commercialization of AF technologies, we consider a range of assumptions concerning capital costs, energy conversion efficiencies and product slates. In 2030, estimates of the implicit subsidy required to induce consumption of AF jet fuel range from $0.45 to $20.85 per gallon. These correspond to a reference jet fuel price of $3.23 per gallon and AF jet fuel costs ranging from $4.01 to $24.41 per gallon. In all cases, as renewable jet fuel represents around 1.4% of total fuel consumed by commercial aviation, the goal has a small impact on aviation operations and emissions relative to a case without the renewable jet fuel target, and emissions continue to grow relative to those in 2005. Costs per metric ton of carbon dioxide equivalent abated by using biofuels range from $42 to $652.

Suggested Citation

  • Winchester, Niven & Malina, Robert & Staples, Mark & Barrett, Steven, 2015. "The Impact of Advanced Biofuels on Aviation Emissions and Operations in the U.S," Conference papers 332639, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332639
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332639/files/7290.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Niven Winchester & Christoph Wollersheim & Regina Clewlow & Nicolas C. Jost & Sergey Paltsev & John M. Reilly & Ian A. Waitz, 2013. "The Impact of Climate Policy on US Aviation," Journal of Transport Economics and Policy, University of Bath, vol. 47(1), pages 1-15, January.
    2. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    3. Winchester, Niven & McConnachie, Dominic & Wollersheim, Christoph & Waitz, Ian A., 2013. "Economic and emissions impacts of renewable fuel goals for aviation in the US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 116-128.
    4. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW Kiel).
    5. Malina, Robert & McConnachie, Dominic & Winchester, Niven & Wollersheim, Christoph & Paltsev, Sergey & Waitz, Ian A., 2012. "The impact of the European Union Emissions Trading Scheme on US aviation," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 36-41.
    6. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    7. Gegg, Per & Budd, Lucy & Ison, Stephen, 2014. "The market development of aviation biofuel: Drivers and constraints," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 34-40.
    8. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    9. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janić, Milan, 2018. "An assessment of the potential of alternative fuels for “greening†commercial air transportation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 235-247.
    2. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Winchester, Niven, 2019. "A win-win solution to abate aviation CO2 emissions," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    4. Fageda, Xavier & Teixidó, Jordi J., 2022. "Pricing carbon in the aviation sector: Evidence from the European emissions trading system," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    5. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    6. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    7. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    8. Jiang, Changmin & Yang, Hangjun, 2021. "Carbon tax or sustainable aviation fuel quota," Energy Economics, Elsevier, vol. 103(C).
    9. Cansino, José M. & Román, Rocío, 2017. "Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain," Energy Policy, Elsevier, vol. 101(C), pages 109-122.
    10. Sharma, Bijay P. & Yu, Tun-Hsiang Edward & English, Burton C. & Boyer, Christopher M., 2018. "Analyzing the Economics of Renewable Jet Fuels Using a Game-theoretic Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 273787, Agricultural and Applied Economics Association.
    11. Masum, Farhad Hossain & Coppola, Ed & Field, John L. & Geller, Daniel & George, Sheeja & Miller, Jonathan L. & Mulvaney, Michael J. & Nana, Sanjay & Seepaul, Ramdeo & Small, Ian M. & Wright, David & D, 2023. "Supply chain optimization of sustainable aviation fuel from carinata in the Southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    12. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Winchester, Niven & McConnachie, Dominic & Wollersheim, Christoph & Waitz, Ian A., 2013. "Economic and emissions impacts of renewable fuel goals for aviation in the US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 116-128.
    2. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    3. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    4. Jenny Trinh & Fumi Harahap & Anton Fagerström & Julia Hansson, 2021. "What Are the Policy Impacts on Renewable Jet Fuel in Sweden?," Energies, MDPI, vol. 14(21), pages 1-30, November.
    5. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
    6. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    7. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    9. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    10. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    11. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
    12. Karel Janda & Ladislav Kristoufek & David Zilberman, 2012. "Biofuels: policies and impacts," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(8), pages 372-386.
    13. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    14. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    15. Janda, Karel & Benes, Ondrej, 2022. "Biofuel Technologies and Policies," EconStor Preprints 249711, ZBW - Leibniz Information Centre for Economics.
    16. Sheu, Jiuh-Biing, 2014. "Airline ambidextrous competition under an emissions trading scheme – A reference-dependent behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 115-145.
    17. Nordin, Ida & Elofsson, Katarina & Jansson, Torbjörn, 2024. "Cost-effective reductions in greenhouse gas emissions: Reducing fuel consumption or replacing fossil fuels with biofuels," Energy Policy, Elsevier, vol. 190(C).
    18. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    19. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    20. Vincent Martinet, 2012. "Effect of soil heterogeneity on the welfare economics of biofuel policies," Working Papers 2012/01, INRA, Economie Publique.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    JEL classification:

    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.