IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/330189.html
   My bibliography  Save this paper

A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion

Author

Listed:
  • Montanarella, Luca
  • Ferrari, Emanuele
  • Borrelli, Pasquale
  • Lugato, Emanuele
  • Panagos, Panos
  • Sartori, Martina
  • Philippidis, George

Abstract

Employing a linkage between a biophysical and an economic model, this study estimates the economic impact of soil erosion by water on the world economy. The global biophysical model estimates soil erosion rates, which are converted into land productivity losses and subsequently inserted into a global market simulation model. The headline result is that soil erosion by water is estimated to incur a global annual cost of eight billion US dollars to global GDP. The concomitant impact on food security is to reduce global agri-food production by 33.7 million tonnes with accompanying rises in agri-food world prices of 0.4% to 3.5%, depending on the food product category. Under pressure to use more marginal land, abstracted water volumes are driven upwards by an estimated 48 billion cubic meters. Finally, there is tentative evidence that soil erosion is accelerating the competitive shifts in comparative advantage on world agri-food markets.

Suggested Citation

  • Montanarella, Luca & Ferrari, Emanuele & Borrelli, Pasquale & Lugato, Emanuele & Panagos, Panos & Sartori, Martina & Philippidis, George, 2019. "A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion," Conference papers 330189, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:330189
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/330189/files/9192_Montanarella.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Rutten, Martine & Shutes, Lindsay & Meijerink, Gerdien, 2013. "Sit down at the ball game: How trade barriers make the world less food secure," Food Policy, Elsevier, vol. 38(C), pages 1-10.
    3. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    4. Smeets, Edward & Tabeau, Andrzej & van Berkum, Siemen & Moorad, Jamil & van Meijl, Hans & Woltjer, Geert, 2014. "The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 393-403.
    5. Philippidis, George & Bartelings, Heleen & Smeets, Edward, 2018. "Sailing into Unchartered Waters: Plotting a Course for EU Bio-Based Sectors," Ecological Economics, Elsevier, vol. 147(C), pages 410-421.
    6. Miguel A. Altieri & Clara I. Nicholls, 2017. "The adaptation and mitigation potential of traditional agriculture in a changing climate," Climatic Change, Springer, vol. 140(1), pages 33-45, January.
    7. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    8. Boulanger, Pierre & Philippidis, George, 2015. "The EU budget battle: Assessing the trade and welfare impacts of CAP budgetary reform," Food Policy, Elsevier, vol. 51(C), pages 119-130.
    9. Tomislav Hengl & Jorge Mendes de Jesus & Robert A MacMillan & Niels H Batjes & Gerard B M Heuvelink & Eloi Ribeiro & Alessandro Samuel-Rosa & Bas Kempen & Johan G B Leenaars & Markus G Walsh & Maria R, 2014. "SoilGrids1km — Global Soil Information Based on Automated Mapping," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-17, August.
    10. Iman Haqiqi & Farzad Taheripour & Jing Liu & Dominique van der Mensbrugghe, 2016. "Introducing Irrigation Water into GTAP Data Base Version 9," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 116-155, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    2. Philippidis, George & M'Barek, Robert & Urban-Boysen, Kirsten & Van Zeist, Willem-Jan, 2023. "Exploring economy-wide sustainable conditions for EU bio-chemical activities," Ecological Economics, Elsevier, vol. 210(C).
    3. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    4. Boysen-Urban, Kirsten & Boysen, Ole & Matthews, Alan & Brockmeier, Martina, 2018. "EU Common Agricultural Policy Post-2020: Exploring the Effects of Safety-Net Policy Instruments," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276200, European Association of Agricultural Economists.
    5. Sanguinet, Eduardo & Alvim, Augusto, 2020. "Effects of EU-MERCOSUR trade agreement on bilateral trade: the role of Brexit," Conference papers 333194, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Pierre Boulanger & Kirsten Boysen-Urban & George Philippidis, 2021. "European Union Agricultural Support ‘Coupling’ in Simulation Modelling: Measuring the Sustainability Impacts," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    7. Nelson Villoria & Rachael Garrett & Florian Gollnow & Kimberly Carlson, 2022. "Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Rumiana Górska, 2022. "Sectoral effects of the Japan-EU Economic Partnership Agreement for the European Union countries," Asia Europe Journal, Springer, vol. 20(2), pages 99-114, June.
    9. Peter B. Dixon & Maureen Rimmer & Nhi Tran, 2019. "GTAP-MVH, A Model for Analysing the Worldwide Effects of Trade Policies in the Motor Vehicle Sector: Theory and Data," Centre of Policy Studies/IMPACT Centre Working Papers g-290, Victoria University, Centre of Policy Studies/IMPACT Centre.
    10. Xin Zhao & Dominique Y van der Mensbrugghe & Roman M. Keeney & Wallace E. Tyner, 2021. "Improving the Way Land Use Change is Handled in Economic Models," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 15, pages 467-515, World Scientific Publishing Co. Pte. Ltd..
    11. James A. Giesecke & Nhi H. Tran & Robert Waschik, 2021. "Should Australia be concerned by Beijing’s trade threats: modelling the economic costs of a restriction on imports of Australian coal," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 1-22, January.
    12. Eduardo Rodrigues Sanguinet & Augusto Mussi Alvim, 2024. "The effects of the EU-MERCOSUR agreement on bilateral trade: the role of Brexit," International Economics and Economic Policy, Springer, vol. 21(1), pages 227-249, February.
    13. Samiul Haque & Kenneth A. Foster & Roman Keeney & Kathryn A. Boys & Badri G. Narayanan, 2019. "Output and input bias effects of U.S. direct payments," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 229-236, March.
    14. Schuenemann, Franziska & Delzeit, Ruth, 2022. "Potentials, subsidies and tradeoffs of cellulosic ethanol in the European Union," Ecological Economics, Elsevier, vol. 195(C).
    15. Kuiper, Marijke & Cui, Hao David, 2021. "Using food loss reduction to reach food security and environmental objectives – A search for promising leverage points," Food Policy, Elsevier, vol. 98(C).
    16. Jia, Zhijie & Lin, Boqiang, 2022. "CEEEA2.0 model: A dynamic CGE model for energy-environment-economy analysis with available data and code," Energy Economics, Elsevier, vol. 112(C).
    17. Huw Lloyd-Ellis & Ardyn Nordstrom, 2021. "Trade, poverty and food security: A survey of recent research and its implications for East Africa," Working Paper 1460, Economics Department, Queen's University.
    18. Peter B. Dixon & Maureen Rimmer & Nhi Tran, 2020. "Creating a Disaggregated CGE Model for Trade Policy Analysis: GTAP-MVH," Foreign Trade Review, , vol. 55(1), pages 42-79, February.
    19. Emanuele Ferrari & Christian Elleby & Beyhan DE JONG & Robert M'barek & Ignacio PEREZ DOMINGUEZ, 2024. "Cumulative economic impact of upcoming trade agreements on EU agriculture," JRC Research Reports JRC135540, Joint Research Centre.
    20. Winchester, Niven & Ledvina, Kirby & Strzepek, Kenneth & Reilly, John M., 2018. "The impact of water scarcity on food, bioenergy and deforestation," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), July.

    More about this item

    Keywords

    Resource /Energy Economics and Policy; Marketing;

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:330189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.