IDEAS home Printed from https://ideas.repec.org/p/ags/ffbi07/48774.html
   My bibliography  Save this paper

Assessment of two alternative switchgrass harvest and transport methods

Author

Listed:
  • Popp, Michael P.
  • Hogan, Robert J., Jr.

Abstract

As the search for renewable energy sources from agriculture intensifies, many agricultural producers are contemplating production of a native perennial grass species, switchgrass (Panicum Vigratum, L.). While much information on various aspects of switchgrass production exists, this paper discusses implications of two alternative harvesting and transportation methods that may be suitable for Arkansas conditions. Results suggested that module building compared to the simpler round baling technology may be a promising alternative.

Suggested Citation

  • Popp, Michael P. & Hogan, Robert J., Jr., 2007. "Assessment of two alternative switchgrass harvest and transport methods," Biofuels, Food and Feed Tradeoffs Conference, April 12-13, 2007, St, Louis, Missouri 48774, Farm Foundation.
  • Handle: RePEc:ags:ffbi07:48774
    DOI: 10.22004/ag.econ.48774
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/48774/files/364-Popp%20Switchgrass%20Modules%20SS%20no%20numbers.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.48774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Petrolia, Daniel R., 2006. "The Economics of Harvesting and Transporting Corn Stover for Conversion to Fuel Ethanol: A Case Study for Minnesota," Staff Papers 14213, University of Minnesota, Department of Applied Economics.
    2. Popp, Michael P., 2007. "Assessment of Alternative Fuel Production from Switchgrass: An Example from Arkansas," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 39(2), pages 1-8, August.
    3. Petrolia, Daniel R., 2006. "Ethanol from Biomass: Economic and Environmental Potential of Converting Corn Stover and Hardwood Forest Residue in Minnesota," 2006 Annual meeting, July 23-26, Long Beach, CA 21422, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    2. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    3. Wang, Chenguang & Larson, James A. & English, Burton C. & Jensen, Kimberly L., 2009. "Cost Analysis of Alternative Harvest, Storage and Transportation Methods for Delivering Switchgrass to a Biorefinery from the Farmers’ perspective," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46812, Southern Agricultural Economics Association.
    4. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic Biofuel Potential Under Land Constraints: Locations, Plant Sizes and Feedstock Supply Costs," Staff General Research Papers Archive 36358, Iowa State University, Department of Economics.
    5. Brechbill, Sarah C. & Tyner, Wallace E., 2008. "The Economics Of Biomass Collection, Transportation, And Supply To Indiana Cellulosic And Electric Utility Facilities," Working papers 6148, Purdue University, Department of Agricultural Economics.
    6. Brechbill, Sarah C. & Tyner, Wallace E. & Ileleji, Klein E., 2008. "The economics of biomass collection and transportation and its supply to Indiana cellulosic and electric utility facilities," Risk, Infrastructure and Industry Evolution Conference, June 24-25, 2008, Berkeley, California 48732, Farm Foundation.
    7. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2016. "Modeling biomass procurement tradeoffs within a cellulosic biofuel cost model," Energy Economics, Elsevier, vol. 58(C), pages 77-83.
    8. Lutes, Jennifer & Popp, Michael, 2015. "Switchgrass as an Income Stabilizing Crop for Cow-calf Producers Impacted by Drought," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205416, Agricultural and Applied Economics Association.
    9. Larson, James A., 2008. "Risk and uncertainty at the farm level," Risk, Infrastructure and Industry Evolution Conference, June 24-25, 2008, Berkeley, California 48728, Farm Foundation.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwabena Krah & Daniel R Petrolia & Angelica Williams & Keith H Coble & Ardian Harri & Roderick M Rejesus, 2018. "Producer Preferences for Contracts on a Risky Bioenergy Crop," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(2), pages 240-258.
    2. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    3. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    4. Zou, Tianyu & Pederson, Glenn D., 2008. "Using Real Options to Evaluate Investments in Ethanol Facilities," Staff Papers 37872, University of Minnesota, Department of Applied Economics.
    5. Babcock, Bruce A. & Marette, Stéphan & Tréguer, David, 2011. "Opportunity for profitable investments in cellulosic biofuels," Energy Policy, Elsevier, vol. 39(2), pages 714-719, February.
    6. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    7. Lazarus, William F., 2008. "Energy Crop Production Costs and Breakeven Prices Under Minnesota Conditions," Staff Papers 45655, University of Minnesota, Department of Applied Economics.
    8. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    9. Song, Jingyu & Gramig, Benjamin M., 2013. "A Spatially Explicit Watershed Scale Optimization of Cellulosic Biofuels Production," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150453, Agricultural and Applied Economics Association.
    10. Eidman, Vernon R. & Petrolia, Daniel R. & Huang, Huajiang & Ramaswamy, Shri, 2009. "The Economic Feasibility of Producing Ethanol from Corn Stover and Hardwood in Minnesota," Staff Papers 47055, University of Minnesota, Department of Applied Economics.
    11. Daniel R. Petrolia, 2008. "An Analysis of the Relationship between Demand for Corn Stover as an Ethanol Feedstock and Soil Erosion," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(4), pages 677-691.
    12. Williams, Jeffery & Brammer, Jon & Llewelyn, Richard & Bergtold, Jason, 2016. "An Economic Analysis of Harvesting Biomass from Sorghums and Corn," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2015, pages 1-13.
    13. Rauh, Stefan & Berenz, Stefan & Heissenhuber, Alois, 2007. "ABSCHATZUNG DES UNTERNEHMERISCHEN RISIKOS BEIM BETRIEB EINER BIOGASANLAGE MIT HILFE DER MONTECARLO-METHODE (German)," 47th Annual Conference, Weihenstephan, Germany, September 26-28, 2007 7588, German Association of Agricultural Economists (GEWISOLA).
    14. Rauh, S. & Berenz, S. & Heißenhuber, A., 2008. "Abschätzung des unternehmerischen Risikos beim Betrieb einer Biogasanlage mit Hilfe der Monte-Carlo-Methode," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    15. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    16. Epplin, Francis M., 2008. "Millions of acres for dedicated energy crops: farms, ranches, or plantations?," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48711, Farm Foundation.
    17. Mooney, Daniel F. & Roberts, Roland K. & English, Burton C. & Tyler, Donald D. & Larson, James A., 2008. "Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6403, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Chen, Chien-Wei & Fan, Yueyue, 2012. "Bioethanol supply chain system planning under supply and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 150-164.
    19. Scott M. Swinton & Felix Dulys & Sarah S.H. Klammer, 2021. "Why Biomass Residue Is Not as Plentiful as It Looks: Case Study on Economic Supply of Logging Residues," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1003-1025, September.
    20. Chovau, Simon & Degrauwe, David & Van der Bruggen, Bart, 2013. "Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 307-321.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ffbi07:48774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/farmfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.