IDEAS home Printed from https://ideas.repec.org/p/ags/eaae17/260829.html
   My bibliography  Save this paper

Achieving GHG Emission Commitments And Food Security Objectives In Norwegian Agriculture

Author

Listed:
  • Vårdal, Erling
  • Blandford, David
  • Gaasland, Ivar

Abstract

At the UN climate change conference in Paris in November 2015, Norway committed itself to a 40% reduction in greenhouse gas (GHG) emissions by 2030 compared to 1990 levels. Agriculture accounts for 8% of Norway’s total GHG emissions. If GHGs from drained and cultivated wetland (categorized under land use, land use change and forestry) are included, the share is 13%; this for a sector that accounts for roughly 0.3% of GDP. As is the case in most countries, agriculture is currently exempt from emission reduction measures, including the European Union’s Emissions Trading System (ETS), in which Norway participates. But the country has recently signaled its intention to include agriculture in future emission reduction efforts. Consideration is being given to how best to achieve GHG reductions in the sector. A recent report by the Norwegian Green Tax Commission, established by the government to evaluate policy options for achieving emission reductions, (Government of Norway, 2015) emphasizes the importance of including agriculture. The Commission suggests that agricultural emissions should be taxed at the same rate as for other sectors. It also recommends that reductions in the production and consumption of red meat should be specifically targeted, through cuts in production grants to farmers and the imposition of consumption taxes. Unsurprisingly, this proposed policy shift is extremely controversial and faces resistance, particularly from the farmers’ unions. Farmers argue that the maintenance of domestic agricultural production is crucial for achieving national food security objectives, in addition to pursuing other aims such as the maintenance of economic activity in rural areas and landscape preservation. Food security, which has been a key policy objective since the end of the Second World War, has been interpreted in Norway as requiring high levels of selfsufficiency in basic agricultural commodities. To achieve this, substantial subsidies are provided to farmers and domestic prices of many commodities are kept at high levels by restricting imports. The Organization for Economic Cooperation and Development (OECD) estimates that the total financial support provided to Norwegian agriculture in 2015 was equivalent to 62% of the value of gross farm receipts, which made Norway (along with Switzerland) a leader in the amount of support provided to agriculture by the 50 OECD member and non-member countries monitored by the Organization (OECD, 2016). In this paper we analyze policy options for achieving a 40% reduction in agricultural GHG emissions, consistent with the economy-wide target, while imposing the restriction that national food production measured in calories should be maintained (the food security target). This is consistent with the way that the Norwegian government identifies the country’s food security objective. In section 2 we outline the current situation with respect to GHG emissions in Norwegian agriculture. In section 3 we illustrate the policy issues involved by considering two product aggregates that are intensive in the use of land for crop production (grainland) and grassland, respectively. The aggregates are based on data for the main commodities in Norwegian agriculture relating to GHG emissions, land use, caloric content, subsidies, and costs per unit of production. We show that even though the opportunity set (i.e., the production combinations that are possible within technical constraints) is narrow, a 40% cut in emissions is achievable by substituting from ruminant products that are intensive in the use of grassland to products based on grainland. We also show that the emissions reduction both reduces government budgetary costs and land use, i.e., ruminant products are characterized by relatively high subsidies and land use. Two-dimensional analysis ignores the fact that per unit emissions from dairy production are low compared to other ruminant products (i.e., beef and sheep production). Both in terms of production value and agricultural employment, dairy farming is the most important component of Norwegian agriculture. Consequently, milk production deserves to be separated from ruminant meat production. Finally in section 4, we present a detailed analysis 3 of policy options derived from a disaggregated model that includes all the major products in Norwegian agriculture. In the model-based analysis, we examine first the imposition of a carbon tax, while maintaining existing agricultural support policies and import protection, and achieving the food security (production of calories) target. Since the imposition of a carbon tax in agriculture presents both technical and political challenges, we then examine an alternative approach of changing the existing structure of agricultural support to approximate the same result. We show that it is possible to change current subsidy rates to mimic the carbon tax and calorie target solution. The explanation for this is that ruminant products not only generate high emissions per produced calorie, but they are also the most highly subsidized products. Meat from ruminants is relatively unimportant in achieving Norway’s food security objective of calorie availability.

Suggested Citation

  • Vårdal, Erling & Blandford, David & Gaasland, Ivar, 2017. "Achieving GHG Emission Commitments And Food Security Objectives In Norwegian Agriculture," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260829, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae17:260829
    DOI: 10.22004/ag.econ.260829
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/260829/files/Achieving%20GHG%20Emission%20Commitments%20And%20Food%20Security%20Objectives%20In%20Norwegian%20Agriculture.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/260829/files/Achieving%20GHG%20Emission%20Commitments%20And%20Food%20Security%20Objectives%20In%20Norwegian%20Agriculture.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.260829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominic Moran & Michael Macleod & Eileen Wall & Vera Eory & Alistair McVittie & Andrew Barnes & Robert Rees & Cairistiona F. E. Topp & Andrew Moxey, 2011. "Marginal Abatement Cost Curves for UK Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 93-118, February.
    2. Bryngelsson, David & Wirsenius, Stefan & Hedenus, Fredrik & Sonesson, Ulf, 2016. "How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture," Food Policy, Elsevier, vol. 59(C), pages 152-164.
    3. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    2. Blandford, David & Gaasland, Ivar & Vardal, Erling, 2016. "Now that the party’s over: achieving GHG emission reduction commitments in Norwegian agriculture," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236330, Agricultural Economics Society.
    3. Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
    4. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    5. Blandford, David & Gaasland, Ivar & Vårdal, Erling, 2014. "GHG abatement welfare cost curves for Norwegian agriculture," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 169734, Agricultural Economics Society.
    6. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    7. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    8. Albert Ayorinde Abegunde, 2017. "Local communities’ belief in climate change in a rural region of Sub-Saharan Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1489-1522, August.
    9. Benjamin Dequiedt & Vera Eory & Juliette Maire & Cairstiona F.E. Topp & Robert Rees & Peter Zander & Moritz Reckling & Nicole Schlaefke, 2015. "Mitigation costs through alternative crop rotations in agriculture: an assessment for 5 European regions," Working Papers 1502, Chaire Economie du climat.
    10. Ruijs, A. & Wossink, A. & Kortelainen, M. & Alkemade, R. & Schulp, C.J.E., 2013. "Trade-off analysis of ecosystem services in Eastern Europe," Ecosystem Services, Elsevier, vol. 4(C), pages 82-94.
    11. Oswald Marinoni & Martijn Grieken, 2016. "ABATE: A New Tool to Produce Marginal Abatement Cost Curves," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 367-377, August.
    12. de Oliveira Silva, Rafael & Barioni, Luis G. & Albertini, Tiago Zanett & Eory, Vera & Topp, Cairistiona F.E. & Fernandes, Fernando A. & Moran, Dominic, 2015. "Developing a nationally appropriate mitigation measure from the greenhouse gas GHG abatement potential from livestock production in the Brazilian Cerrado," Agricultural Systems, Elsevier, vol. 140(C), pages 48-55.
    13. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    14. Benjamin Dequiedt & Dominic Moran, 2014. "The cost of emissions mitigation by legume crops in French agriculture," Working Papers 1410, Chaire Economie du climat.
    15. Yong Zhu & Congjia Huo, 2022. "The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China," Energies, MDPI, vol. 15(12), pages 1-22, June.
    16. Branca, Giacomo & Lipper, Leslie & Sorrentino, Alessandro, 2012. "Benefit-costs analysis of climate-related agricultural investments in Africa: a case study," 2012 First Congress, June 4-5, 2012, Trento, Italy 124109, Italian Association of Agricultural and Applied Economics (AIEAA).
    17. David Blandford & Katharine Hassapoyannes, 2018. "The role of agriculture in global GHG mitigation," OECD Food, Agriculture and Fisheries Papers 112, OECD Publishing.
    18. Lin Meng & Wentao Si, 2022. "Pro-Environmental Behavior: Examining the Role of Ecological Value Cognition, Environmental Attitude, and Place Attachment among Rural Farmers in China," IJERPH, MDPI, vol. 19(24), pages 1-24, December.
    19. Monika Komorowska & Marcin Niemiec & Jakub Sikora & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Pavol Findura & Hatice Gurgulu & Joanna Stuglik & Maciej Chowaniak & Atılgan Atılgan, 2022. "Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan," Energies, MDPI, vol. 15(17), pages 1-19, August.
    20. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae17:260829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.