IDEAS home Printed from https://ideas.repec.org/p/ags/eaae02/24901.html
   My bibliography  Save this paper

Canary Island Tomato Exports: A Structural Analysis of Seasonality

Author

Listed:
  • Rodriguez, Gloria Martin
  • Hernandez, Jose Juan Caceres

Abstract

The European tomato market is characterised by a constant process of dynamic adjustment toward the equilibrium. Furthermore, Canary tomato exports cause a high seasonal impact on market prices in the winter period. In these circumstances, an adequate distribution of shipments throughout the campaign could contribute to maximize producers' profits. The goal of this paper is to analyse the seasonal pattern of Canary tomato exports to Europe throughout the first fourteen campaigns following Spanish integration into the European Union. These export levels show some degree of instability, clearly related to the changes in the European Union trade rules, and there is a long period, the summer, without exports. Moreover, we have opted by using weekly data. These factors should be taken into account in order to accurately capture the performance of exports and, specifically, the nature of their seasonal behaviour. Thus, this analysis is carried out inside the frame delimited by the structural approach to time series and the usefulness of spline functions as an alternative to standard seasonal variation models is shown.

Suggested Citation

  • Rodriguez, Gloria Martin & Hernandez, Jose Juan Caceres, 2002. "Canary Island Tomato Exports: A Structural Analysis of Seasonality," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24901, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae02:24901
    DOI: 10.22004/ag.econ.24901
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/24901/files/cp02ma33.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.24901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Andrew & Koopman, Siem Jan & Riani, Marco, 1997. "The Modeling and Seasonal Adjustment of Weekly Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 354-368, July.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín Rodríguez, G. & Cáceres Hernández, J. J. & Guirao Pérez, G, 2005. "Un modelo para la exportación semanal de tomate de Almería/A model for the Weekly Tomato Exports from Almería," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 731-751, Diciembre.
    2. Rodriguez, Gloria Martin & Hernandez, Jose Juan Caceres, 2005. "Evolving Seasonal Pattern of Tenerife Tomato Exports," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24501, European Association of Agricultural Economists.
    3. Dewenter, Ralf & Heimeshoff, Ulrich, 2016. "Predicting advertising volumes: A structural time series approach," DICE Discussion Papers 228, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    4. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
    5. Mauro Bernardi & Lea Petrella, 2015. "Multiple seasonal cycles forecasting model: the Italian electricity demand," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 671-695, November.
    6. Joao Tovar Jalles, 2009. "Structural time series models and the Kalman filter: a concise review," Nova SBE Working Paper Series wp541, Universidade Nova de Lisboa, Nova School of Business and Economics.
    7. Ralf Dewenter & Ulrich Heimeshoff, 2017. "Predicting Advertising Volumes Using Structural Time Series Models: A Case Study," Economics Bulletin, AccessEcon, vol. 37(3), pages 1644-1652.
    8. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    9. Siem Jan Koopman & Philip Hans Franses, 2002. "Constructing Seasonally Adjusted Data with Time‐varying Confidence Intervals," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 509-526, December.
    10. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    11. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    12. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    13. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    14. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    15. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    16. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    17. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    18. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    19. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    20. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    21. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.

    More about this item

    Keywords

    International Relations/Trade;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae02:24901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.