IDEAS home Printed from https://ideas.repec.org/p/ags/aesc18/273501.html
   My bibliography  Save this paper

The effects of variation in management objectives on responses to invading diseases under uncertainty: Forest Pathogens

Author

Listed:
  • Dangerfield, C.E.
  • Whalley, A.E.
  • Hanley, N.
  • Healey, J.R.
  • Gilligan, C.A.

Abstract

The real options approach provides a powerful tool for determining the optimal time at which to adopt disease control measures given uncertainty about the future spread of an invading pest/pathogen. We consider the management of disease invasions in the natural environment typified by woodlands. Previous studies considered the timing of control from the point of view of a central planner, for example a governmental decision making body. However, decisions regarding the deployment of control measures in the landscape are typically taken by individual land managers. Woodlands provide both marketable benefits, such as timber, and non-marketable benefits, for example biodiversity. The relative importance placed on these types of benefit depends on the land purpose, which is determined by a managers’ objectives. We investigate how management objectives influence the optimal timing of control adoption. Our results show that differences in objectives lead managers to exercise the option to control at different times, and potentially never adopt disease control. Since infection can spread from one region to another, managers who do not adopt control therefore transfer the risk of infection to other managers within the landscape. For landscapes composed of managers with divergent objectives, this creates conflict due to the transferable externality (the disease). We show targeted subsidies can reduce differences in the timing of control adoption between managers with divergent objectives. Both lump-sum subsidies and annual subsidies bring forward the adoption of control strategies, causing them to be implemented over a wider range of infection proportions in an individual woodland. However, the two types of subsidy have opposite effects on the decision to suspend control. Annual subsidies delay suspension and extend the region over which control continues to be implemented. In contrast, lump-sum subsidies slightly reduce the region over which control continues to be implemented. For high proportions of infection, this implies that a lump-sum subsidy can induce a value-maximising manager to suspend control earlier: the opposite effect to that presumably intended. Our results have important implications for national decision making bodies and suggest that incentives may need to be targeted at specific groups to ensure a coherent response to disease control.

Suggested Citation

  • Dangerfield, C.E. & Whalley, A.E. & Hanley, N. & Healey, J.R. & Gilligan, C.A., 2018. "The effects of variation in management objectives on responses to invading diseases under uncertainty: Forest Pathogens," 92nd Annual Conference, April 16-18, 2018, Warwick University, Coventry, UK 273501, Agricultural Economics Society.
  • Handle: RePEc:ags:aesc18:273501
    DOI: 10.22004/ag.econ.273501
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273501/files/Elizabeth_Whalley_Manager_objective_paper_AES_2018.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, October.
    2. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    3. Sims, Charles & Finnoff, David, 2012. "The role of spatial scale in the timing of uncertain environmental policy," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 369-382.
    4. Marten, Alex L. & Moore, Christopher C., 2011. "An options based bioeconomic model for biological and chemical control of invasive species," Ecological Economics, Elsevier, vol. 70(11), pages 2050-2061, September.
    5. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.
    6. Charles Sims & David Finnoff & Jason Shogren, 2016. "Bioeconomics of invasive species: using real options theory to integrate ecology, economics, and risk management," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 61-70, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. E. Dangerfield & A. E. Whalley & N. Hanley & C. A. Gilligan, 2018. "What a Difference a Stochastic Process Makes: Epidemiological-Based Real Options Models of Optimal Treatment of Disease," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 691-711, July.
    2. Charles Sims & David Finnoff & Jason F. Shogren, 2018. "Taking One for the Team: Is Collective Action More Responsive to Ecological Change?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 589-615, July.
    3. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    4. Conrad, Jon M. & Kotani, Koji, 2005. "When to drill? Trigger prices for the Arctic National Wildlife Refuge," Resource and Energy Economics, Elsevier, vol. 27(4), pages 273-286, November.
    5. Sims, Charles & Finnoff, David, 2013. "When is a “wait and see” approach to invasive species justified?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 235-255.
    6. Davis, Rebecca J. & Sims, Charles, 2016. "To Frack or Not to Frack: Option Value Analysis on the U.S. Natural Gas Market," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235642, Agricultural and Applied Economics Association.
    7. Guthrie, Graeme, 2024. "Farm debt and the over-exploitation of natural capital," Resource and Energy Economics, Elsevier, vol. 77(C).
    8. Yukiko Hashida & Eli P. Fenichel, 2022. "Valuing natural capital when management is dominated by periods of inaction," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 791-811, March.
    9. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    10. Yonggu Kim & Keeyoung Shin & Joseph Ahn & Eul-Bum Lee, 2017. "Probabilistic Cash Flow-Based Optimal Investment Timing Using Two-Color Rainbow Options Valuation for Economic Sustainability Appraisement," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    11. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Weaver, Robert D. & Moon, Yongma, 2010. "Private Labels: A Mechanism For Fulfilling Consumer Demand For Healthy Food?," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116397, European Association of Agricultural Economists.
    13. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    14. Casper Agaton, 2017. "Coal, Renewable, or Nuclear? A Real Options Approach to Energy Investments in the Philippines," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 6(2), pages 50-62.
    15. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    16. Peter Buchen & Otto Konstandatos, 2005. "A New Method Of Pricing Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 245-259, April.
    17. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    18. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    19. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    20. Navarrete, Eduardo, 2012. "Modeling optimal pine stands harvest under stochastic wood stock and price in Chile," Forest Policy and Economics, Elsevier, vol. 15(C), pages 54-59.

    More about this item

    Keywords

    Agricultural and Food Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc18:273501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.