IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v70y2018i3d10.1007_s10640-017-0168-x.html
   My bibliography  Save this article

What a Difference a Stochastic Process Makes: Epidemiological-Based Real Options Models of Optimal Treatment of Disease

Author

Listed:
  • C. E. Dangerfield

    (University of Cambridge)

  • A. E. Whalley

    (University of Warwick)

  • N. Hanley

    (University of St Andrews)

  • C. A. Gilligan

    (University of Cambridge)

Abstract

The real options approach has been used within environmental economics to investigate the impact of uncertainty on the optimal timing of control measures to minimise the impacts of invasive species, including pests and diseases. Previous studies typically model the growth in infected area using geometric Brownian motion (GBM). The advantage of this simple approach is that it allows for closed form solutions. However, such a process does not capture the mechanisms underlying the spread of infection. In particular the GBM assumption does not respect the natural upper boundary of the system, which is determined by the maximum size of the host species, nor the deceleration in the rate of infection as this boundary is approached. We show how the stochastic process describing the growth in infected area can be derived from the characteristics of the spread of infection. If the model used does not appropriately capture uncertainty in infection dynamics, then the excessive delay before treatment implies that the full value of the option to treat is not realised. Indeed, when uncertainty is high or the disease is fast spreading, ignoring the mechanisms of infection spread can lead to control never being deployed. Thus the results presented here have important implications for the way in which the real options approach is applied to determine optimal timing of disease control given uncertainty in future disease progression.

Suggested Citation

  • C. E. Dangerfield & A. E. Whalley & N. Hanley & C. A. Gilligan, 2018. "What a Difference a Stochastic Process Makes: Epidemiological-Based Real Options Models of Optimal Treatment of Disease," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 691-711, July.
  • Handle: RePEc:kap:enreec:v:70:y:2018:i:3:d:10.1007_s10640-017-0168-x
    DOI: 10.1007/s10640-017-0168-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-017-0168-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-017-0168-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ellen Brooks-Pollock & Gareth O. Roberts & Matt J. Keeling, 2014. "A dynamic model of bovine tuberculosis spread and control in Great Britain," Nature, Nature, vol. 511(7508), pages 228-231, July.
    2. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.
    3. Robert S. Pindyck, 2006. "Uncertainty in Environmental Economics," Working Papers 0617, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Sims, Charles & Finnoff, David, 2013. "When is a “wait and see” approach to invasive species justified?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 235-255.
    6. Sarkar, Sudipto, 2009. "Optimal fishery harvesting rules under uncertainty," Resource and Energy Economics, Elsevier, vol. 31(4), pages 272-286, November.
    7. Insley, Margaret & Lei, Manle, 2007. "Hedges and Trees: Incorporating Fire Risk into Optimal Decisions in Forestry Using a No-Arbitrage Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(3), pages 1-23, December.
    8. Margaret Insley & Kimberly Rollins, 2005. "On Solving the Multirotational Timber Harvesting Problem with Stochastic Prices: A Linear Complementarity Formulation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 735-755.
    9. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, September.
    10. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    11. Sims, Charles & Finnoff, David, 2012. "The role of spatial scale in the timing of uncertain environmental policy," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 369-382.
    12. Marten, Alex L. & Moore, Christopher C., 2011. "An options based bioeconomic model for biological and chemical control of invasive species," Ecological Economics, Elsevier, vol. 70(11), pages 2050-2061, September.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. I. Tzouramani & K. Mattas, 2004. "Employing real options methodology in agricultural investments: the case of greenhouse construction," Applied Economics Letters, Taylor & Francis Journals, vol. 11(6), pages 355-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guthrie, Graeme, 2024. "Farm debt and the over-exploitation of natural capital," Resource and Energy Economics, Elsevier, vol. 77(C).
    2. Tang, Liang & Ma, Xianlei & Zhou, Yuepeng & Shi, Xiaoping & Ma, Jia, 2019. "Social relations, public interventions and land rent deviation: Evidence from Jiangsu Province in China," Land Use Policy, Elsevier, vol. 86(C), pages 406-420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    2. Dangerfield, C.E. & Whalley, A.E. & Hanley, N. & Healey, J.R. & Gilligan, C.A., 2018. "The effects of variation in management objectives on responses to invading diseases under uncertainty: Forest Pathogens," 92nd Annual Conference, April 16-18, 2018, Warwick University, Coventry, UK 273501, Agricultural Economics Society.
    3. Charles Sims & David Finnoff & Jason F. Shogren, 2018. "Taking One for the Team: Is Collective Action More Responsive to Ecological Change?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 589-615, July.
    4. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    5. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    6. Yonggu Kim & Keeyoung Shin & Joseph Ahn & Eul-Bum Lee, 2017. "Probabilistic Cash Flow-Based Optimal Investment Timing Using Two-Color Rainbow Options Valuation for Economic Sustainability Appraisement," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    7. Manley, Bruce & Niquidet, Kurt, 2010. "What is the relevance of option pricing for forest valuation in New Zealand?," Forest Policy and Economics, Elsevier, vol. 12(4), pages 299-307, April.
    8. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    9. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.
    10. Tee, James & Scarpa, Riccardo & Marsh, Dan & Guthrie, Graeme, 2012. "Valuation of Carbon Forestry and the New Zealand Emissions Trading Scheme: A Real Options Approach Using the Binomial Tree Method," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123665, International Association of Agricultural Economists.
    11. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    12. Otto Konstandatos & Timothy J Kyng, 2012. "Real Options Analysis for Commodity Based Mining Enterprises with Compound and Barrier Features," Published Paper Series 2012-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    13. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    14. Conrad, Jon M. & Kotani, Koji, 2005. "When to drill? Trigger prices for the Arctic National Wildlife Refuge," Resource and Energy Economics, Elsevier, vol. 27(4), pages 273-286, November.
    15. Charles Sims & David Finnoff & Jason Shogren, 2016. "Bioeconomics of invasive species: using real options theory to integrate ecology, economics, and risk management," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 61-70, February.
    16. Sims, Charles & Finnoff, David, 2013. "When is a “wait and see” approach to invasive species justified?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 235-255.
    17. Galay, Gregory, 2018. "The impact of spatial price differences on oil sands investments," Energy Economics, Elsevier, vol. 69(C), pages 170-184.
    18. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    19. Davis, Rebecca J. & Sims, Charles, 2016. "To Frack or Not to Frack: Option Value Analysis on the U.S. Natural Gas Market," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235642, Agricultural and Applied Economics Association.
    20. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Taxation and rotation age under stochastic forest stand value," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 113-127, July.

    More about this item

    Keywords

    Real options; Logistic SDE; Disease control; Stochastic epidemics; Optimal timing;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:70:y:2018:i:3:d:10.1007_s10640-017-0168-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.