IDEAS home Printed from https://ideas.repec.org/p/ags/aaea99/21628.html
   My bibliography  Save this paper

Measuring Market Risk Of The Cattle Feeding Margin: An Application Of Value-At-Risk Analysis

Author

Listed:
  • Manfredo, Mark R.
  • Leuthold, Raymond M.

Abstract

VaR gives a prediction of potential portfolio losses, with a certain level of confidence, that may be encountered over a specified time period due to adverse price movements in the portfolio's assets. For example, a VaR of 1 million dollars at the 95% level of confidence implies that overall portfolio losses should not exceed 1 million dollars more than 5% of the time over a given holding period. This research examines the effectiveness of VaR measures, developed using alternative estimation techniques, in predicting large losses in the cattle feeding margin. Results show that several estimation techniques, both parametric and non-parametric, provide well calibrated VaR estimates such that violations (losses exceed the VaR estimate) are commensurate with the desired level of confidence. In particular, estimates developed using JP Morgan's Risk Metrics methodology seem promising.

Suggested Citation

  • Manfredo, Mark R. & Leuthold, Raymond M., 1999. "Measuring Market Risk Of The Cattle Feeding Margin: An Application Of Value-At-Risk Analysis," 1999 Annual meeting, August 8-11, Nashville, TN 21628, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea99:21628
    DOI: 10.22004/ag.econ.21628
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/21628/files/sp99ma09.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.21628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    2. Ted C. Schroeder & Marvin L. Hayenga, 1988. "Comparison of selective hedging and options strategies in cattle feedlot risk management," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 8(2), pages 141-156, April.
    3. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    4. Jose A. Lopez, 1996. "Regulatory Evaluation of Value-at-Risk Models," Center for Financial Institutions Working Papers 96-51, Wharton School Center for Financial Institutions, University of Pennsylvania.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odening, Martin & Hinrichs, Jan, 2003. "Die Quantifizierung von Marktrisiken in der Tierproduktion mittels Value-at-Risk und Extreme-Value-Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(02), pages 1-11.
    2. Odening, M. & Mußhoff, O., 2001. "Value at Risk – ein nützliches Instrument des Risikomanagement in Agrarbetrieben?," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 37.
    3. Odening, Martin & Hinrichs, Jan, 2002. "Assessment Of Market Risk In Hog Production Using Value-At-Risk And Extreme Value Theory," 2002 Annual meeting, July 28-31, Long Beach, CA 19907, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Manfredo, Mark R. & Garcia, Philip & Leuthold, Raymond M., 2000. "Time-Varying Multiproduct Hedge Ratio Estimation In The Soybean Complex: A Simplified Approach," 2000 Conference, April 17-18 2000, Chicago, Illinois 18933, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark R. Manfredo. & Raymond M. Leuthold, 1999. "Market Risk Measurement and the Cattle Feeding Margin: An Application of Value-at-Risk," Finance 9908002, University Library of Munich, Germany.
    2. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    3. Xiongwei Ju & Neil D. Pearson, 1998. "Using Value-at-Risk to Control Risk Taking: How Wrong Can you Be?," Finance 9810002, University Library of Munich, Germany.
    4. Zhineng Hu & Jing Ma & Liangwei Yang & Xiaoping Li & Meng Pang, 2019. "Decomposition-Based Dynamic Adaptive Combination Forecasting for Monthly Electricity Demand," Sustainability, MDPI, vol. 11(5), pages 1-25, February.
    5. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    6. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    7. JS Armstrong & Fred Collopy, 2004. "Causal Forces: Structuring Knowledge for Time-series Extrapolation," General Economics and Teaching 0412003, University Library of Munich, Germany.
    8. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    9. Darryll Hendricks & Beverly Hirtle, 1997. "Bank capital requirements for market risk: the internal models approach," Economic Policy Review, Federal Reserve Bank of New York, vol. 3(Dec), pages 1-12.
    10. Fiordaliso, Antonio, 1998. "A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems," International Journal of Forecasting, Elsevier, vol. 14(3), pages 367-379, September.
    11. Tri Le & Bertrand Clarke, 2018. "On the Interpretation of Ensemble Classifiers in Terms of Bayes Classifiers," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 198-229, July.
    12. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    13. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
    16. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    17. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    18. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    19. Alvarez, Luis J. & Delrieu, Juan C. & Jareño, Javier, 1997. "Restricted forecasts and economic target monitoring: An application to the Spanish Consumer Price Index," Journal of Policy Modeling, Elsevier, vol. 19(3), pages 333-349, June.
    20. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea99:21628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.