IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_1747.html
   My bibliography  Save this paper

Forecasting and Combining Competing Models of Exchange Rate Determination

Author

Listed:
  • Carlo Altavilla
  • Paul De Grauwe

Abstract

This paper investigates the out-of-sample forecast performance of a set of competing models of exchange rate determination. We compare standard linear models with models that characterize the relationship between exchange rate and its underlying fundamentals by nonlinear dynamics. Linear models tend to outperform at short forecast horizons especially when deviations from long-term equilibrium are small. In contrast, nonlinear models with more elaborate mean-reverting components dominate at longer horizons especially when deviations from long-term equilibrium are large. The results also suggest that combining different forecasting procedures generally produces more accurate forecasts than can be attained from a single model.

Suggested Citation

  • Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange Rate Determination," CESifo Working Paper Series 1747, CESifo.
  • Handle: RePEc:ces:ceswps:_1747
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp1747.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    2. Kilian, Lutz & Taylor, Mark P., 2003. "Why is it so difficult to beat the random walk forecast of exchange rates?," Journal of International Economics, Elsevier, vol. 60(1), pages 85-107, May.
    3. Cheung, Yin-Wong & Chinn, Menzie David & Garcia Pascual, Antonio, 2003. "Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive?," Santa Cruz Department of Economics, Working Paper Series qt12z9x4c5, Department of Economics, UC Santa Cruz.
    4. Carlo Altavilla & Paul De Grauwe, 2010. "Non-linearities in the relation between the exchange rate and its fundamentals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-21.
    5. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    6. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    7. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    8. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    9. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    10. Meese, Richard A & Rose, Andrew K, 1990. "Nonlinear, Nonparametric, Nonessential Exchange Rate Estimation," American Economic Review, American Economic Association, vol. 80(2), pages 192-196, May.
    11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    12. Meese, Richard, 1990. "Currency Fluctuations in the Post-Bretton Woods Era," Journal of Economic Perspectives, American Economic Association, vol. 4(1), pages 117-134, Winter.
    13. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    16. Sarno,Lucio & Taylor,Mark P., 2003. "The Economics of Exchange Rates," Cambridge Books, Cambridge University Press, number 9780521485845, September.
    17. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. Charles Engel & Kenneth D. West, 2004. "Accounting for Exchange Rate Variability in Present-Value Models When the Discount Factor is Near One," NBER Working Papers 10267, National Bureau of Economic Research, Inc.
    20. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    21. Richard A. Meese & Andrew K. Rose, 1991. "An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 603-619.
    22. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    23. Taylor, Mark P. & Peel, David A., 2000. "Nonlinear adjustment, long-run equilibrium and exchange rate fundamentals," Journal of International Money and Finance, Elsevier, vol. 19(1), pages 33-53, February.
    24. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    2. Buncic, Daniel & Piras, Gion Donat, 2016. "Heterogeneous agents, the financial crisis and exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 313-359.
    3. Chen, Qiwei & Costantini, Mauro & Deschamps, Bruno, 2016. "How accurate are professional forecasts in Asia? Evidence from ten countries," International Journal of Forecasting, Elsevier, vol. 32(1), pages 154-167.
    4. Zhang, Xinyu & Lu, Zudi & Zou, Guohua, 2013. "Adaptively combined forecasting for discrete response time series," Journal of Econometrics, Elsevier, vol. 176(1), pages 80-91.
    5. Kurmaş Akdoğan, 2017. "Unemployment hysteresis and structural change in Europe," Empirical Economics, Springer, vol. 53(4), pages 1415-1440, December.
    6. Heijdra, Ben J. & Ligthart, Jenny E., 2007. "Fiscal policy, monopolistic competition, and finite lives," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 325-359, January.
    7. Gang Cheng & Sicong Wang & Yuhong Yang, 2015. "Forecast Combination under Heavy-Tailed Errors," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    8. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    9. AsadUllah, Muhammad & Mujahid, Hira & I. Tabash, Mosab & Ayubi, Sharique & Sabri, Rabia, 2020. "Forecasting indian rupee/us dollar: arima, exponential smoothing, naïve, nardl, combination techniques," MPRA Paper 111150, University Library of Munich, Germany.
    10. Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
    11. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    12. Kurmaş Akdoğan, 2019. "Size and sign asymmetries in house price adjustments," Applied Economics, Taylor & Francis Journals, vol. 51(48), pages 5268-5281, October.
    13. Bruno Deschamps, 2015. "Are aggregate corporate earnings forecasts unbiased and efficient?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 803-818, November.
    14. Michał Rubaszek & Paweł Skrzypczyński & Grzegorz Koloch, 2010. "Forecasting the Polish Zloty with Non-Linear Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(2), pages 151-167, March.
    15. Prabhath Jayasinghe & Albert K. Tsui & Zhaoyong Zhang, 2014. "Exchange Rate Exposure of Sectoral Returns and Volatilities: Further Evidence From Japanese Industrial Sectors," Pacific Economic Review, Wiley Blackwell, vol. 19(2), pages 216-236, May.
    16. Akdoğan, Kurmaş, 2020. "Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment?," Resources Policy, Elsevier, vol. 67(C).
    17. Kawakami, Kei, 2013. "Conditional forecast selection from many forecasts: An application to the Yen/Dollar exchange rate," Journal of the Japanese and International Economies, Elsevier, vol. 28(C), pages 1-18.
    18. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    19. Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
    20. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    21. Kurmaş Akdoğan, 2015. "Asymmetric Behaviour of Inflation around the Target in Inflation-Targeting Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 62(5), pages 486-504, November.
    22. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    23. Kang Chen & Chang Yee Kwan, 2015. "How are Exchange Rates Managed? Evidence of an Anchor-Based Heuristic," The World Economy, Wiley Blackwell, vol. 38(6), pages 1006-1014, June.
    24. Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    25. Seddha-udom, Thanaporn, 2014. "Daily Exchange Rate Determination: Short-Term Speculation And Longerterm Expectation," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 10(1-2), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Altavilla & Paul De Grauwe, 2010. "Non-linearities in the relation between the exchange rate and its fundamentals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-21.
    2. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    3. Wu, Jyh-Lin & Hu, Yu-Hau, 2009. "New evidence on nominal exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 28(6), pages 1045-1063, October.
    4. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    5. Michał Rubaszek & Paweł Skrzypczyński & Grzegorz Koloch, 2010. "Forecasting the Polish Zloty with Non-Linear Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(2), pages 151-167, March.
    6. Jaehun Chung & Yongmiao Hong, 2013. "Model-Free Evaluation of Directional Predictability in Foreign Exchange," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    8. Yuan, Chunming, 2011. "Forecasting exchange rates: The multi-state Markov-switching model with smoothing," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 342-362, April.
    9. repec:wyi:journl:002068 is not listed on IDEAS
    10. Frommel, Michael & MacDonald, Ronald & Menkhoff, Lukas, 2005. "Markov switching regimes in a monetary exchange rate model," Economic Modelling, Elsevier, vol. 22(3), pages 485-502, May.
    11. López-Suárez, Carlos Felipe & Rodríguez-López, José Antonio, 2011. "Nonlinear exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 30(5), pages 877-895, September.
    12. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    13. Manzan, Sebastiano & Westerhoff, Frank H., 2007. "Heterogeneous expectations, exchange rate dynamics and predictability," Journal of Economic Behavior & Organization, Elsevier, vol. 64(1), pages 111-128, September.
    14. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    15. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    16. Zsolt Darvas & Zoltán Schepp, 2007. "Forecasting Exchange Rates of Major Currencies with Long Maturity Forward Rates," Working Papers 0705, Department of Mathematical Economics and Economic Analysis, Corvinus University of Budapest.
    17. Xie, Zixiong & Chen, Shyh-Wei, 2019. "Exchange rates and fundamentals: A bootstrap panel data analysis," Economic Modelling, Elsevier, vol. 78(C), pages 209-224.
    18. Syllignakis, Manolis N. & Kouretas, Georgios P., 2011. "Markov-switching regimes and the monetary model of exchange rate determination: Evidence from the Central and Eastern European markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(5), pages 707-723.
    19. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    20. Feng, Wenjun & Zhang, Zhengjun, 2023. "Currency exchange rate predictability: The new power of Bitcoin prices," Journal of International Money and Finance, Elsevier, vol. 132(C).
    21. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.

    More about this item

    Keywords

    non-linearity; exchange rate modelling; forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_1747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.