IDEAS home Printed from https://ideas.repec.org/p/ags/aaea22/343580.html
   My bibliography  Save this paper

The Impact of Soil Erosion on Mean Yields and Yield Risk

Author

Listed:
  • Yan, Hongqiang
  • Rejesus, Roderick M.
  • Chen, Le
  • Aglasan, Serkan

Abstract

No abstract is available for this item.

Suggested Citation

  • Yan, Hongqiang & Rejesus, Roderick M. & Chen, Le & Aglasan, Serkan, 2024. "The Impact of Soil Erosion on Mean Yields and Yield Risk," 2024 Annual Meeting, July 28-30, New Orleans, LA 343580, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea22:343580
    DOI: 10.22004/ag.econ.343580
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/343580/files/27991.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.343580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    2. J. M. Antle & W. J. Goodger, 1984. "Measuring Stochastic Technology: The Case of Tulare Milk Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 342-350.
    3. Francis Annan & Wolfram Schlenker, 2015. "Federal Crop Insurance and the Disincentive to Adapt to Extreme Heat," American Economic Review, American Economic Association, vol. 105(5), pages 262-266, May.
    4. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    5. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    6. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    7. Alt, Klaus & Osborn, C. Tim & Colacicco, Daniel, 1989. "Soil Erosion: What Effect on Agricultural Productivity?," Agricultural Information Bulletins 309483, United States Department of Agriculture, Economic Research Service.
    8. S. Seremesic & D. Milosev & I. Djalovic & T. Zeremski & J. Ninkov, 2011. "Management of soil organic carbon in maintaining soil productivity and yield stability of winter wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(5), pages 216-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ags:aaea22:335514 is not listed on IDEAS
    2. Ashok K. Mishra & Mike G. Tsionas, 2020. "A Minimax Regret Approach to Decision Making Under Uncertainty," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 698-718, September.
    3. Lien, Gudbrand & Kumbhakar, Subal C. & Mishra, Ashok K. & Hardaker, J. Brian, 2022. "Does risk management affect productivity of organic rice farmers in India? Evidence from a semiparametric production model," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1392-1402.
    4. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    5. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    6. Luigi Biagini & Simone Severini, 2022. "How Does the Farmer Strike a Balance between Income and Risk across Inputs? An Application in Italian Field Crop Farms," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    7. Kedar Kulkarni & David Rossi, 2023. "Determinants of downside risk exposure: An analysis of Korean rice farms using partial and quantile moments," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1356-1373, September.
    8. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.
    9. Mukasa Adamon N., 2016. "Working Paper 233 - Technology Adoption and Risk Exposure among Smallholder Farmers: Panel Data Evidence from Tanzania and Uganda," Working Paper Series 2328, African Development Bank.
    10. Antle, John, 1987. "Technology and Uncertainty: Evidence from Egypt," 1987 Occasional Paper Series No. 4 197406, International Association of Agricultural Economists.
    11. Mintewab Bezabih & Remidius Ruhinduka & Mare Sarr, 2016. "Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach," GRI Working Papers 256, Grantham Research Institute on Climate Change and the Environment.
    12. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    13. Nolan, Elizabeth & Santos, Paulo, 2012. "Insurance premiums and GM traits," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125942, International Association of Agricultural Economists.
    14. Chunxiao Song & Yue Rong & Ruifeng Liu & Les Oxley & Hengyun Ma, 2022. "Testing the Effects of Water-Saving Technologies Adapted to Drought: Empirical Evidence from the Huang-Huai-Hai Region in China," Land, MDPI, vol. 11(12), pages 1-22, November.
    15. Kassie, Menale & Yesuf, Mahmud & Köhlin, Gunnar, 2008. "The Role of Production Risk in Sustainable Land-Management Technology Adoption in the Ethiopian Highlands," RFF Working Paper Series dp-08-15-efd, Resources for the Future.
    16. Salvatore Di Falco & Marcella Veronesi, 2011. "On Adaptation to Climate Change and Risk Exposure in the Nile Basin of Ethiopia," IED Working paper 11-15, IED Institute for Environmental Decisions, ETH Zurich.
    17. Li, Zheng & Rejesus, Roderick M. & Zheng, Xiaoyong, 2018. "Nonparametric Estimation and Inference of Production Risk with Categorical Variables," 2018 Annual Meeting, August 5-7, Washington, D.C. 274400, Agricultural and Applied Economics Association.
    18. Perloff, Jeffrey M. & Schlenker, Wolfram & Sears, Molly & Wu, Ximing, 2020. "Crop Failures from Temperature and Precipitation Shocks: Implications for U.S. Crop Insurance," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304540, Agricultural and Applied Economics Association.
    19. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    20. Ragnar Tveteras & Ola Flaten & Gudbrand Lien, 2011. "Production risk in multi-output industries: estimates from Norwegian dairy farms," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4403-4414.
    21. Michal Apollo & Viacheslav Andreychouk & Suman S. Bhattarai, 2018. "Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India)," Sustainability, MDPI, vol. 10(4), pages 1-17, March.

    More about this item

    Keywords

    Crop Production/Industries; Farm Management; Production Economics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea22:343580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.