IDEAS home Printed from https://ideas.repec.org/p/ags/aaea17/258104.html
   My bibliography  Save this paper

Flexible Modeling of Multivariate Risks in Pricing Margin Protection Insurance: Modeling Portfolio Risks with Mixtures of Mixtures

Author

Listed:
  • Zeytoon Nejad Moosavian, Seyyed Ali

Abstract

Margin Protection Programs (MPPs) are relatively new insurance plans, introduced by USDA’s Risk Management Agency (RMA). The attractiveness of these risk management instruments lies in the fact that the financial stability of agricultural production and farming operations is more dependent on margins than solely revenues, which neglect production costs, as is the case for Revenue Protection Programs (RPPs). This article examines the structure and rating of margin protection insurance policies by considering a broad class of high-dimensional copula models that parameterize the dependence among multivariate sources of risks. A variety of copula methods, including Archimedean Copulas (ACs), Mixture Copulas (MCs), and Vine Copulas (VCs) are used to analyse the dependence structure between revenues and input costs. In terms of methodology, flexible mixtures of parametric distributions are applied to characterize marginal densities, and likewise flexible mixtures of alternative copulas are used to model dependence. This article also argues that the rating methodology that accounts for irregular and anomalous features of dependence such as asymmetry, non-linearity, non-ellipticity, and tail dependence between input prices and output prices can result in more accurate premiums, and therefore, can increase the hedging effectiveness of the MPPs and the market efficiency in the US crop insurance market.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Zeytoon Nejad Moosavian, Seyyed Ali, 2017. "Flexible Modeling of Multivariate Risks in Pricing Margin Protection Insurance: Modeling Portfolio Risks with Mixtures of Mixtures," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258104, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea17:258104
    DOI: 10.22004/ag.econ.258104
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/258104/files/Abstracts_17_06_15_14_46_19_17__98_122_138_32_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.258104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    2. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    3. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    4. A. Ford Ramsey & Sujit K. Ghosh & Barry K. Goodwin, 2020. "Rating exotic price coverage in crop revenue insurance," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 80(5), pages 609-631, May.
    5. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    6. Ahmed, Mansur & Goodwin, Barry, 2015. "Copula-Based Modeling of Dependence Structure among International Food Grain Markets," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206059, Agricultural and Applied Economics Association.
    7. Benaglia, Tatiana & Chauveau, Didier & Hunter, David R. & Young, Derek S., 2009. "mixtools: An R Package for Analyzing Mixture Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i06).
    8. Chen, Kuan-Ju & Chen, Kuan-Heng, 2016. "Analysis of Energy and Agricultural Commodity Markets with the Policy Mandated: A Vine Copula-based ARMA-EGARCH Model," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236028, Agricultural and Applied Economics Association.
    9. Tobias Michael Erhardt & Claudia Czado & Ulf Schepsmeier, 2015. "R-vine models for spatial time series with an application to daily mean temperature," Biometrics, The International Biometric Society, vol. 71(2), pages 323-332, June.
    10. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    11. Zhu, Ying & Ghosh, Sujit K. & Goodwin, Barry K., 2008. "Modeling Dependence in the Design of Whole Farm---A Copula-Based Model Approach," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6282, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    13. Marin Bozic & John Newton & Cameron S. Thraen & Brian W. Gould, 2014. "Tails Curtailed: Accounting for Nonlinear Dependence in Pricing Margin Insurance for Dairy Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 1117-1135.
    14. Goodwin, Barry K. & Roberts, Matthew C. & Coble, Keith H., 2000. "Measurement Of Price Risk In Revenue Insurance: Implications Of Distributional Assumptions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(1), pages 1-20, July.
    15. Chen, Ying-Erh & Goodwin, Barry K., 2010. "The Design of Multiyear Crop Insurance Contracts," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61644, Agricultural and Applied Economics Association.
    16. Barry K. Goodwin & Ashley Hungerford, 2015. "Copula-Based Models of Systemic Risk in U.S. Agriculture: Implications for Crop Insurance and Reinsurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 879-896.
    17. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    18. Carl H. Nelson, 1990. "The Influence of Distributional Assumptions on the Calculation of Crop Insurance Premia," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 12(1), pages 71-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    2. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    3. Chemkha, Rahma & BenSaïda, Ahmed & Ghorbel, Ahmed, 2021. "Connectedness between cryptocurrencies and foreign exchange markets: Implication for risk management," Journal of Multinational Financial Management, Elsevier, vol. 59(C).
    4. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    5. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    6. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    8. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    9. Erhardt, Tobias Michael & Czado, Claudia & Schepsmeier, Ulf, 2015. "Spatial composite likelihood inference using local C-vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 74-88.
    10. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.
    11. ARAUJO ENCISO Sergio Rene & PIERALLI SIMONE & PEREZ DOMINGUEZ Ignacio, 2017. "Partial Stochastic Analysis with the Aglink-Cosimo Model: A Methodological Overview," JRC Research Reports JRC108837, Joint Research Centre.
    12. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    13. Soumyashree Dixit & K. V. Jayakumar, 2022. "A Non-stationary and Probabilistic Approach for Drought Characterization Using Trivariate and Pairwise Copula Construction (PCC) Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1217-1236, March.
    14. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    15. Miao, Ruiqing & Khanna, Madhu, 2017. "Costs of meeting a cellulosic biofuel mandate with perennial energy crops: Implications for policy," Energy Economics, Elsevier, vol. 64(C), pages 321-334.
    16. Nguyen-Huy, Thong & Deo, Ravinesh C. & An-Vo, Duc-Anh & Mushtaq, Shahbaz & Khan, Shahjahan, 2017. "Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones," Agricultural Water Management, Elsevier, vol. 191(C), pages 153-172.
    17. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    18. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    19. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    20. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.

    More about this item

    Keywords

    Risk and Uncertainty; Demand and Price Analysis; Agricultural and Food Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea17:258104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.