IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124892.html
   My bibliography  Save this paper

Impacts of Energy Shocks on US Agricultural Productivity Growth and Food Prices —A Structural VAR Analysis

Author

Listed:
  • Wang, Sun Ling
  • McPhail, Lihong Lu

Abstract

This study proposes to use a structural VAR model, using annual percentage change series on U.S. gasoline prices, agricultural productivity, real GDP, agricultural exports, and agricultural commodity prices, to assess the impact of energy shocks on U.S. agricultural productivity growth and food price variations. These data span the period 1948 to 2009. Study results indicate that in the short-run (1 year) an energy shock and a productivity shock each accounts equally for 10 percent of the food price volatility. However, the impact from an energy shock overweighs the contribution of a productivity shock in the intermediate term (3 years), where an energy shock’s contribution increases to twice as much as a productivity shock’s contribution (16 percent compared to 8 percent). Besides the specific food market shock, the global demand shock in U.S. agricultural exports is the major factor in explaining the volatility in U.S. food prices, and accounts for one-third of the food price fluctuations.

Suggested Citation

  • Wang, Sun Ling & McPhail, Lihong Lu, 2012. "Impacts of Energy Shocks on US Agricultural Productivity Growth and Food Prices —A Structural VAR Analysis," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124892, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124892
    DOI: 10.22004/ag.econ.124892
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124892/files/Wang.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuglie, Keith, 2013. "U.S. Agricultural Productivity," 2013: Productivity and Its Impacts on Global Trade, June 2-4, 2013. Seville, Spain 152336, International Agricultural Trade Research Consortium.
    2. Haizhi Tong & Lilyan E. Fulginiti, 2005. "Chinese Regional Agricultural Productivity in the 1990'a," Others 0502012, University Library of Munich, Germany.
    3. Yu, Bingxin & Nin-Pratt, Alejandro, 2011. "Agricultural productivity and policies in Sub-Saharan Africa:," IFPRI discussion papers 1150, International Food Policy Research Institute (IFPRI).
    4. McPhail, Lihong Lu, 2011. "Assessing the impact of US ethanol on fossil fuel markets: A structural VAR approach," Energy Economics, Elsevier, vol. 33(6), pages 1177-1185.
    5. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    6. Mark Gehlhar & Agapi Somwaru & Peter B. Dixon & Maureen T. Rimmer & Ashley R. Winston, 2010. "Economywide Implications from US Bioenergy Expansion," American Economic Review, American Economic Association, vol. 100(2), pages 172-177, May.
    7. Eldon Ball & David Schimmelpfennig & Sun Ling Wang, 2013. "Is U.S. Agricultural Productivity Growth Slowing?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 35(3), pages 435-450.
    8. Derek Headey & Shenggen Fan, 2008. "Anatomy of a crisis: the causes and consequences of surging food prices," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 375-391, November.
    9. Veeman, Terrence S. & Gray, Richard S., 2009. "Agricultural Production and Productivity in Canada," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 24(4), pages 1-8.
    10. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    11. Wang, Sun Ling & Ball, Eldon, 2014. "Agricultural Productivity Growth in the United States: 1948-2011," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 01, pages 1-1, February.
    12. V. Eldon Ball & Jean‐Pierre Butault & Carlos San Juan & Ricardo Mora, 2010. "Productivity and international competitiveness of agriculture in the European Union and the United States," Agricultural Economics, International Association of Agricultural Economists, vol. 41(6), pages 611-627, November.
    13. Keith O. Fuglie, 2008. "Is a slowdown in agricultural productivity growth contributing to the rise in commodity prices?," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 431-441, November.
    14. V. Eldon Ball & Jean-Christophe Bureau & Richard Nehring & Agapi Somwaru, 1997. "Agricultural Productivity Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(4), pages 1045-1063.
    15. Zibin Zhang & Luanne Lohr & Cesar Escalante & Michael Wetzstein, 2009. "Ethanol, Corn, and Soybean Price Relations in a Volatile Vehicle-Fuels Market," Energies, MDPI, vol. 2(2), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ball, V.E. & Färe, R. & Grosskopf, S. & Margaritis, D., 2015. "The role of energy productivity in U.S. agriculture," Energy Economics, Elsevier, vol. 49(C), pages 460-471.
    2. Xian, Hui & Colson, Gregory & Karali, Berna & Wetzstein, Michael, 2017. "Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets," Journal of Forest Economics, Elsevier, vol. 28(C), pages 42-48.
    3. Mat Rahim, Siti Rohaya, 2014. "Asymmetric Cointegration: Barley and Crude Oil Price in United States," MPRA Paper 58447, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sun Ling & McPhail, Lihong, 2014. "Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis," Energy Economics, Elsevier, vol. 46(C), pages 435-444.
    2. Eldon Ball & David Schimmelpfennig & Sun Ling Wang, 2013. "Is U.S. Agricultural Productivity Growth Slowing?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 35(3), pages 435-450.
    3. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    4. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    5. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    6. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Non-linear price transmission between biofuels, fuels and food commodities," Working Papers IES 2013/16, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2013.
    7. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    8. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    9. Chiu, Fan-Ping & Hsu, Chia-Sheng & Ho, Alan & Chen, Chi-Chung, 2016. "Modeling the price relationships between crude oil, energy crops and biofuels," Energy, Elsevier, vol. 109(C), pages 845-857.
    10. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    11. Papież, Monika, 2014. "A dynamic analysis of causality between prices of corn, crude oil and ethanol," MPRA Paper 56540, University Library of Munich, Germany.
    12. Xiaodong Du and Lihong Lu McPhail, 2012. "Inside the Black Box: the Price Linkage and Transmission between Energy and Agricultural Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Tan Ngoc Vu & Duc Hong Vo & Chi Minh Ho & Loan Thi-Hong Van, 2019. "Modeling the Impact of Agricultural Shocks on Oil Price in the US: A New Approach," JRFM, MDPI, vol. 12(3), pages 1-27, September.
    14. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    15. Karakotsios, Achillefs & Katrakilidis, Constantinos & Kroupis, Nikolaos, 2021. "The dynamic linkages between food prices and oil prices. Does asymmetry matter?," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    16. Xian, Hui & Colson, Gregory & Karali, Berna & Wetzstein, Michael, 2017. "Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets," Journal of Forest Economics, Elsevier, vol. 28(C), pages 42-48.
    17. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Regime-dependent topological properties of biofuels networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(2), pages 1-12, February.
    18. Rosa, Franco & Vasciaveo, Michela & Weaver, Robert D., 2014. "Agricultural and oil commodities: price transmission and market integration between US and Italy," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(2), pages 1-25, August.
    19. Jin, Yu & Huffman, Wallace E., 2013. "Reduced U.S. Funding of Public Agricultural Research and Extension Risks Lowering Future Agricultural Productivity Growth Prospects," Staff General Research Papers Archive 36796, Iowa State University, Department of Economics.
    20. Lajos Baráth & Imre Fertő, 2017. "Productivity and Convergence in European Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 228-248, February.

    More about this item

    Keywords

    Agricultural and Food Policy; Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.