IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v46y2014icp435-444.html
   My bibliography  Save this article

Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis

Author

Listed:
  • Wang, Sun Ling
  • McPhail, Lihong

Abstract

We examine the impacts of energy price shocks on U.S. agricultural productivity growth and commodity prices' volatility by developing a structural VAR model. We use historical annual data of real U.S. gasoline prices, agricultural total factor productivity (TFP), real GDP, real agricultural exports, and real agricultural commodity price from 1948 to 2011 to estimate the model. Our results indicate that an energy price shock has a negative impact on productivity growth in the short run (1year). An energy price shock and an agricultural productivity shock each account for about 10% of U.S. agricultural commodity price volatility with the productivity shock's contribution slightly higher. However, the impact from energy prices outweighs the contribution of agricultural productivity in the medium term (3years). With more persistent impacts, energy shocks contribute to most (about 15%) of commodity price's variation in the long run.

Suggested Citation

  • Wang, Sun Ling & McPhail, Lihong, 2014. "Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis," Energy Economics, Elsevier, vol. 46(C), pages 435-444.
  • Handle: RePEc:eee:eneeco:v:46:y:2014:i:c:p:435-444
    DOI: 10.1016/j.eneco.2014.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McPhail, Lihong Lu & Du, Xiaodong & Muhammad, Andrew, 2012. "Disentangling Corn Price Volatility: The Role of Global Demand, Speculation, and Energy," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 44(3), pages 401-410, August.
    2. Derek Headey & Shenggen Fan, 2008. "Anatomy of a crisis: the causes and consequences of surging food prices," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 375-391, November.
    3. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    4. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    5. Xiaodong Du and Lihong Lu McPhail, 2012. "Inside the Black Box: the Price Linkage and Transmission between Energy and Agricultural Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Wood, David O., 1990. "Energy price shocks and productivity slowdown," Energy Policy, Elsevier, vol. 18(1), pages 61-65.
    7. Keith O. Fuglie, 2008. "Is a slowdown in agricultural productivity growth contributing to the rise in commodity prices?," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 431-441, November.
    8. Thomas W. Hertel & Jayson Beckman, 2011. "Commodity Price Volatility in the Biofuel Era: An Examination of the Linkage between Energy and Agricultural Markets," NBER Chapters, in: The Intended and Unintended Effects of US Agricultural and Biotechnology Policies, pages 189-221, National Bureau of Economic Research, Inc.
    9. Abbott, Philip C. & Hurt, Christopher & Tyner, Wallace E., 2009. "What's Driving Food Prices? March 2009 Update," Issue Reports 48495, Farm Foundation.
    10. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    11. Zibin Zhang & Luanne Lohr & Cesar Escalante & Michael Wetzstein, 2009. "Ethanol, Corn, and Soybean Price Relations in a Volatile Vehicle-Fuels Market," Energies, MDPI, vol. 2(2), pages 1-20, June.
    12. Harri, Ardian & Nalley, Lanier & Hudson, Darren, 2009. "The Relationship between Oil, Exchange Rates, and Commodity Prices," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(2), pages 501-510, August.
    13. Maddison, Angus, 1987. "Growth and Slowdown in Advanced Capitalist Economies: Techniques of Quantitative Assessment," Journal of Economic Literature, American Economic Association, vol. 25(2), pages 649-698, June.
    14. Nishimizu, Mieko & Page, John M, Jr, 1982. "Total Factor Productivity Growth, Technological Progress and Technical Efficiency Change: Dimensions of Productivity Change in Yugoslavia, 1965-78," Economic Journal, Royal Economic Society, vol. 92(368), pages 920-936, December.
    15. McPhail, Lihong Lu, 2011. "Assessing the impact of US ethanol on fossil fuel markets: A structural VAR approach," Energy Economics, Elsevier, vol. 33(6), pages 1177-1185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    2. M. Thenmozhi & Shipra Maurya, 2020. "Crude Oil Volatility Transmission Across Food Commodity Markets: A Multivariate BEKK-GARCH Approach," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 20(2), pages 131-164, August.
    3. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    4. Papież, Monika, 2014. "A dynamic analysis of causality between prices of corn, crude oil and ethanol," MPRA Paper 56540, University Library of Munich, Germany.
    5. Qiu, Cheng & Colson, Gregory & Escalante, Cesar & Wetzstein, Michael, 2012. "Considering macroeconomic indicators in the food before fuel nexus," Energy Economics, Elsevier, vol. 34(6), pages 2021-2028.
    6. Wang, Sun Ling & McPhail, Lihong Lu, 2012. "Impacts of Energy Shocks on US Agricultural Productivity Growth and Food Prices —A Structural VAR Analysis," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124892, Agricultural and Applied Economics Association.
    7. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    8. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    9. Guellil, Mohammed Seghir & Benbouziane, Mohamed, 2018. "Volatility Linkages between Agricultural Commodity Prices, Oil Prices and Real USD Exchange Rate || Vínculos de volatilidad entre precios de productos agrícolas, precios del petróleo y tipo de cambio ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 71-83, Diciembre.
    10. da Silveira, Rodrigo Lanna F. & Mattos, Fabio L., 2015. "Price And Volatility Transmission In Livestock And Grain Markets: Examining The Effect Of Increasing Ethanol Production Across Countries," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205684, Agricultural and Applied Economics Association.
    11. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    12. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    13. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Non-linear price transmission between biofuels, fuels and food commodities," Working Papers IES 2013/16, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2013.
    14. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    15. Chiu, Fan-Ping & Hsu, Chia-Sheng & Ho, Alan & Chen, Chi-Chung, 2016. "Modeling the price relationships between crude oil, energy crops and biofuels," Energy, Elsevier, vol. 109(C), pages 845-857.
    16. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    17. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. repec:hum:wpaper:sfb649dp2013-042 is not listed on IDEAS
    19. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    20. Anthony N. Rezitis, 2015. "Empirical Analysis of Agricultural Commodity Prices, Crude Oil Prices and US Dollar Exchange Rates using Panel Data Econometric Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 851-868.
    21. Karel Janda & Ladislav Kristoufek & David Zilberman, 2012. "Biofuels: policies and impacts," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(8), pages 372-386.

    More about this item

    Keywords

    U.S. agricultural productivity growth; Total factor productivity (TFP); Energy shocks; Agricultural commodity prices; Structural VAR analysis;
    All these keywords.

    JEL classification:

    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • G2 - Financial Economics - - Financial Institutions and Services
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:46:y:2014:i:c:p:435-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.