IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2013_16.html
   My bibliography  Save this paper

Non-linear price transmission between biofuels, fuels and food commodities

Author

Abstract

For the biofuel markets and related commodities, we study their price transmission, which is in fact equivalent to studying price cross-elasticities. Importantly, we focus on the price dependence of the price transmission mechanism. Several methodological caveats are discussed. Specifically, we combine the memory robust feasible generalized least squares estimation with two-stage least squares to control for endogeneity bias and inconsistency. We find that both ethanol and biodiesel prices are responsive to their production factors (ethanol to corn, and biodiesel to German diesel). The strength of transmission between both significant pairs increased remarkably during the food crisis of 2007/2008.

Suggested Citation

  • Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Non-linear price transmission between biofuels, fuels and food commodities," Working Papers IES 2013/16, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2013.
  • Handle: RePEc:fau:wpaper:wp2013_16
    as

    Download full text from publisher

    File URL: http://ies.fsv.cuni.cz/sci/publication/show/id/4903/lang/cs
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Zilberman & Gal Hochman & Deepak Rajagopal & Steve Sexton & Govinda Timilsina, 2013. "The Impact of Biofuels on Commodity Food Prices: Assessment of Findings," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 275-281.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Ciaian, Pavel & Kancs, d'Artis, 2011. "Food, energy and environment: Is bioenergy the missing link?," Food Policy, Elsevier, vol. 36(5), pages 571-580, October.
    4. Ladislav Kristoufek & Karel Janda & David Zilberman, 2012. "Mutual Responsiveness of Biofuels, Fuels and Food Prices," CAMA Working Papers 2012-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Xiaoguang Chen & Madhu Khanna, 2017. "Land Use and Greenhouse Gas Implications of Biofuels: Role of Technology and Policy," Natural Resource Management and Policy, in: Madhu Khanna & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy: Volume II, pages 213-237, Springer.
    6. Rajagopal, Deepak & Zilberman, David, 2007. "Review of environmental, economic and policy aspects of biofuels," Policy Research Working Paper Series 4341, The World Bank.
    7. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Madhu Khanna & Amy W. Ando & Farzad Taheripour, 2008. "Welfare Effects and Unintended Consequences of Ethanol Subsidies," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 411-421.
    10. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    11. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    12. Xiaoguang Chen & Haixiao Huang & Madhu Khanna & Hayri Önal, 2011. "Meeting the Mandate for Biofuels: Implications for Land Use, Food, and Fuel Prices," NBER Chapters, in: The Intended and Unintended Effects of US Agricultural and Biotechnology Policies, pages 223-267, National Bureau of Economic Research, Inc.
    13. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2010. "Price Transmission in the US Ethanol Market," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 55-72, Springer.
    14. Cha, Kyung Soo & Bae, Jeong Hwan, 2011. "Dynamic impacts of high oil prices on the bioethanol and feedstock markets," Energy Policy, Elsevier, vol. 39(2), pages 753-760, February.
    15. Timilsina, Govinda R. & Mevel, Simon & Shrestha, Ashish, 2011. "Oil price, biofuels and food supply," Energy Policy, Elsevier, vol. 39(12), pages 8098-8105.
    16. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    17. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    18. Rajcaniova, Miroslava & Drabik, Dusan & Ciaian, Pavel, 2011. "International Interlinkages of Biofuel Prices: The Role of Biofuel Policies," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103222, Agricultural and Applied Economics Association.
    19. Luchansky, Matthew S. & Monks, James, 2009. "Supply and demand elasticities in the U.S. ethanol fuel market," Energy Economics, Elsevier, vol. 31(3), pages 403-410, May.
    20. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    21. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    22. repec:lic:licosd:29211 is not listed on IDEAS
    23. Thompson, Wyatt & Meyer, Seth & Westhoff, Pat, 2009. "How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?," Energy Policy, Elsevier, vol. 37(2), pages 745-749, February.
    24. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2011. "Nonlinearities in the U.S. corn‐ethanol‐oil‐gasoline price system," Agricultural Economics, International Association of Agricultural Economists, vol. 42(1), pages 35-45, January.
    25. Zibin Zhang & Luanne Lohr & Cesar Escalante & Michael Wetzstein, 2009. "Ethanol, Corn, and Soybean Price Relations in a Volatile Vehicle-Fuels Market," Energies, MDPI, vol. 2(2), pages 1-20, June.
    26. Dahl, Carol A., 2012. "Measuring global gasoline and diesel price and income elasticities," Energy Policy, Elsevier, vol. 41(C), pages 2-13.
    27. Langholtz, Matthew & Graham, Robin & Eaton, Laurence & Perlack, Robert & Hellwinkel, Chad & De La Torre Ugarte, Daniel G., 2012. "Price projections of feedstocks for biofuels and biopower in the U.S," Energy Policy, Elsevier, vol. 41(C), pages 484-493.
    28. McPhail, Lihong Lu, 2011. "Assessing the impact of US ethanol on fossil fuel markets: A structural VAR approach," Energy Economics, Elsevier, vol. 33(6), pages 1177-1185.
    29. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    30. Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), 2010. "Handbook of Bioenergy Economics and Policy," Natural Resource Management and Policy, Springer, number 978-1-4419-0369-3, March.
    31. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    2. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    3. Ladislav Kristoufek & Karel Janda & David Zilberman, 2015. "Co-movements of Ethanol Related Prices: Evidence from Brazil and the USA," CAMA Working Papers 2015-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladislav Kristoufek & Karel Janda & David Zilberman, 2012. "Mutual Responsiveness of Biofuels, Fuels and Food Prices," CAMA Working Papers 2012-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    3. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    4. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    5. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    7. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    8. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Regime-dependent topological properties of biofuels networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(2), pages 1-12, February.
    9. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    10. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    11. Papież, Monika, 2014. "A dynamic analysis of causality between prices of corn, crude oil and ethanol," MPRA Paper 56540, University Library of Munich, Germany.
    12. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    13. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    14. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Ethanol and field crops: Is there a price connection?," Food Policy, Elsevier, vol. 63(C), pages 53-61.
    15. Guellil, Mohammed Seghir & Benbouziane, Mohamed, 2018. "Volatility Linkages between Agricultural Commodity Prices, Oil Prices and Real USD Exchange Rate || Vínculos de volatilidad entre precios de productos agrícolas, precios del petróleo y tipo de cambio ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 71-83, Diciembre.
    16. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    17. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    18. Zingbagba, Mark & Nunes, Rubens & Fadairo, Muriel, 2020. "The impact of diesel price on upstream and downstream food prices: Evidence from São Paulo," Energy Economics, Elsevier, vol. 85(C).
    19. Pavla BLAHOVA & Karel JANDA & Ladislav KRISTOUFEK, 2014. "The perspectives for genetically modified cellulosic biofuels in the Central European conditions," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 60(6), pages 247-259.
    20. Štěpán Chrz & Karel Janda & Ladislav Krištoufek, 2014. "Modelování provázanosti trhů potravin, biopaliv a fosilních paliv [Modeling Interconnections within Food, Biofuel, and Fossil Fuel Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 117-140.

    More about this item

    Keywords

    biofuels; price transmission; non-linearity;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2013_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.