IDEAS home Printed from https://ideas.repec.org/p/ags/aaea00/21850.html
   My bibliography  Save this paper

Bt Cotton Refuge Policy

Author

Listed:
  • Livingston, Michael J.
  • Carlson, Gerald A.
  • Fackler, Paul L.

Abstract

Since cotton producers do not own legal rights to kill insect populations that are susceptible to insecticides, individual producers may have no incentive to account for future, insecticide-resistance productivity losses arising from their pest-management decisions. As a result, the collective actions of producers may increase the rate of resistance development relative to the rate that maximizes social welfare. Concerns regarding insect-pest development of resistance to Bt cotton prompted the Environmental Protection Agency to establish legal limits on the proportion of total acres individual producers may plant, representing the first attempt to regulate the development of insecticide resistance and the first instance of the use of refuge as a policy instrument. Ever since Carlson and Castle first pointed out the resource characteristics of insecticide susceptibility, pest management in the presence of increasing resistance has been viewed as an exhaustible resource allocation problem, and many studies have examined efficient insecticide use in this setting. Resistance management studies found in the economics literature, however, have examined single-insect single-insecticide problems almost exclusively. The majority of genetic and entomological studies have followed suit. Since cotton producers routinely use multiple insecticides and insecticide mixtures to manage multiple insect pests, and since simulation and empirical evidence suggests that toxin mixtures can affect the rate of resistance development to component toxins, the standard model may not be well suited for the examination of refuge policies under cotton production settings. Static refuge policies that maximize the present value of profit flows attainable by producers over five- and 10-year planning horizons are examined using a deterministic, operational model that accounts for short- and long-run features of production and resistance development. The model accounts for the development of resistance in two cotton insect pests to Bt cotton and a popular conventional insecticide, and relationships between refuge policy, insecticide resistance, producer profit and producer behavior in Louisiana. The model is used to examine relationships between resistance simulation model parameters and refuge policies and comparative advantages between treated and untreated refuge policies.

Suggested Citation

  • Livingston, Michael J. & Carlson, Gerald A. & Fackler, Paul L., 2000. "Bt Cotton Refuge Policy," 2000 Annual meeting, July 30-August 2, Tampa, FL 21850, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea00:21850
    DOI: 10.22004/ag.econ.21850
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/21850/files/sp00li01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.21850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christine A. Shoemaker, 1982. "Optimal Integrated Control of Univoltine Pest Populations with Age Structure," Operations Research, INFORMS, vol. 30(1), pages 40-61, February.
    2. Plant, Richard E. & Mangel, Marc & Flynn, Lawrence E., 1985. "Multiseasonal management of an agricultural pest II: the economic optimization problem," Journal of Environmental Economics and Management, Elsevier, vol. 12(1), pages 45-61, March.
    3. Carolyn R. Harper & David Zilberman, 1989. "Pest Externalities from Agricultural Inputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(3), pages 692-702.
    4. D. Hueth & U. Regev, 1974. "Optimal Agricultural Pest Management with Increasing Pest Resistance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 56(3), pages 543-552.
    5. Regev, Uri & Shalit, Haim & Gutierrez, A. P., 1983. "On the optimal allocation of pesticides with increasing resistance: The case of alfalfa weevil," Journal of Environmental Economics and Management, Elsevier, vol. 10(1), pages 86-100, March.
    6. Bryan J. Hubbell & Michele C. Marra & Gerald A. Carlson, 2000. "Estimating the Demand for a New Technology: Bt Cotton and Insecticide Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(1), pages 118-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramanan Laxminarayan & R. Simpson, 2002. "Refuge Strategies for Managing Pest Resistance in Transgenic Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(4), pages 521-536, August.
    2. Alston, Julian M. & Hyde, Jeffrey & Marra, Michele C. & Mitchell, Paul D., 2003. "An Ex Ante Analysis of the Benefits from the Adoption of Corn Rootworm Resistant, Transgenic Corn Technology," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 57828, Australian Agricultural and Resource Economics Society.
    3. Silvia Secchi & Terrance M. Hurley & Bruce A. Babcock & Richard L. Hellmich, 2006. "Managing European Corn Borer Resistance to Bt Corn with Dynamic Refuges," Natural Resource Management and Policy, in: Richard E. Just & Julian M. Alston & David Zilberman (ed.), Regulating Agricultural Biotechnology: Economics and Policy, chapter 0, pages 559-577, Springer.
    4. Secchi, Silvia, 2000. "Economic issues in resistance management," ISU General Staff Papers 2000010108000013359, Iowa State University, Department of Economics.
    5. Laxminarayan, Ramanan & Simpson, R. David, 2000. "Biological Limits on Agricultural Intensification: An Example from Resistance Management," Discussion Papers 10914, Resources for the Future.
    6. Simpson, R. David & Laxminarayan, Ramanan, 2000. "Biological Limits on Agricultural Intensification: An Example from Resistance Management," RFF Working Paper Series dp-00-43, Resources for the Future.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion Desquilbet & Markus Herrmann, 2016. "The Dynamics of Pest Resistance Management: The Case of Refuge Fields for Bt Crops," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 253-288, June.
    2. Desquilbet, Marion & Hermann, Markus, 2012. "An assessment of bioeconomic modeling of pest resistance with new insights into dynamic refuge fields," TSE Working Papers 12-263, Toulouse School of Economics (TSE).
    3. Regev, Uri, 1990. "The Impact of Risk on Pest Management Strategies," 1990 Annual meeting, August 5-8, Vancouver, Canada 270735, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Grogan, Kelly A., 2014. "When ignorance is not bliss: Pest control decisions involving beneficial insects," Ecological Economics, Elsevier, vol. 107(C), pages 104-113.
    5. Lichtenberg, Erik & Zilberman, David & Archibald, Sandra O., 1990. "Economics and Pesticides," Working Papers 197750, University of Maryland, Department of Agricultural and Resource Economics.
    6. Secchi, Silvia, 2000. "Economic issues in resistance management," ISU General Staff Papers 2000010108000013359, Iowa State University, Department of Economics.
    7. Silvia Secchi & Terrance M. Hurley & Bruce A. Babcock & Richard L. Hellmich, 2006. "Managing European Corn Borer Resistance to Bt Corn with Dynamic Refuges," Natural Resource Management and Policy, in: Richard E. Just & Julian M. Alston & David Zilberman (ed.), Regulating Agricultural Biotechnology: Economics and Policy, chapter 0, pages 559-577, Springer.
    8. Mathews, Kenneth H., Jr., 2001. "Antimicrobial Drug Use And Veterinary Costs In U.S. Livestock Production," Agricultural Information Bulletins 33695, United States Department of Agriculture, Economic Research Service.
    9. Ben White, 2000. "A Review of the Economics of Biological Natural Resources," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(3), pages 419-462, September.
    10. Secchi, Silvia & Babcock, Bruce A., 1999. "A Model Of Pesticide Resistance As A Common Property And Exhaustible Resource," 1999 Annual meeting, August 8-11, Nashville, TN 21664, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Marsh, Thomas L. & Huffaker, Ray G. & Folwell, Raymond J. & Long, Gary, 1998. "An Intraseasonal Bioeconomic Model Of Plrv Net Necrosis," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20935, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Davis, Rex & Tisdell, Clement A., 2001. "Alternative Specifications and Extensions of the Economic Threshold Concept and the Control of Livestock Pests," Economics, Ecology and Environment Working Papers 48381, University of Queensland, School of Economics.
    13. Cheryl Brown & Lori Lynch & David Zilberman, 2002. "The Economics of Controlling Insect-Transmitted Plant Diseases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 279-291.
    14. Grogan, Kelly A., 2013. "When Ignorance Is Not Bliss: Pest Control Decisions Involving Beneficial Insects," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149610, Agricultural and Applied Economics Association.
    15. Russell J. Gorddard & David J. Pannell & Greg Hertzler, 1995. "An Optimal Control Model For Integrated Weed Management Under Herbicide Resistance," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(1), pages 71-87, April.
    16. Grogan, Kelly A. & Chakravarty, Shourish, 2017. "The Feasibility of Area-wide Pest Management under Heterogeneity and Uncertainty: The Case of Citrus Health Management Areas," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259188, Agricultural and Applied Economics Association.
    17. Hurley, Terrance M. & Babcock, Bruce A. & Hellmich, Richard L., 2001. "Bt Corn And Insect Resistance: An Economic Assessment Of Refuges," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(01), pages 1-19, July.
    18. Stefan Ambec & Marion Desquilbet, 2012. "Regulation of a Spatial Externality: Refuges versus Tax for Managing Pest Resistance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 79-104, January.
    19. Bullock, David S. & D'Arcangelo, Filippo Maria & Desquilbet, Marion, 2018. "A discussion of the market and policy failures associated with the adoption of herbicide-tolerant crops," TSE Working Papers 18-959, Toulouse School of Economics (TSE), revised Aug 2019.
    20. Ambec, Stefan & Desquilbet, Marion, 2006. "Pest Resistance Regulation and Pest Mobility," 2006 Annual meeting, July 23-26, Long Beach, CA 21134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    Agricultural and Food Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea00:21850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.