IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/14502.html
   My bibliography  Save this book chapter

What We Know and Don't Know about Climate Change, and the Implications for Policy

In: Environmental and Energy Policy and the Economy, volume 2

Author

Listed:
  • Robert S. Pindyck

Abstract

There is a lot we know about climate change, but there is also a lot we don’t know. Even if we knew how much CO2 will be emitted over the coming decades, we wouldn’t know how much temperatures will rise as a result. And even if we could predict the extent of warming that will occur, we can say very little about its impact. I explain that we face considerable uncertainty over climate change and its impact, why there is so much uncertainty, and why we will continue to face uncertainty in the near future. I also explain the policy implications of climate change uncertainty. First, the uncertainty (particularly over the possibility of a catastrophic climate outcome) creates insurance value, which pushes us to earlier and stronger actions to reduce CO2 emissions. Second, uncertainty interacts with two kinds of irreversibilities: CO2 remains in the atmosphere for centuries, making the environmental damage from CO2 emissions irreversible, pushing us to earlier and stronger actions and reducing CO2 emissions requires sunk costs, that is, irreversible expenditures, which pushes us away from earlier actions. Both irreversibilities are inherent in climate policy, but the net effect is ambiguous.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Robert S. Pindyck, 2020. "What We Know and Don't Know about Climate Change, and the Implications for Policy," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 2, pages 4-43, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:14502
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c14502.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
    2. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    3. Stern, Nicholas, 2015. "Why Are We Waiting? The Logic, Urgency, and Promise of Tackling Climate Change," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262029189, December.
    4. Freeman, Mark C. & Wagner, Gernot & Zeckhauser, Richard J., 2015. "Climate Sensitivity Uncertainty: When Is Good News Bad?," Working Paper Series rwp15-002, Harvard University, John F. Kennedy School of Government.
    5. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    6. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2013. "Developing a Social Cost of Carbon for US Regulatory Analysis: A Methodology and Interpretation," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 23-46, January.
    7. Joshua Krissansen-Totton & David C. Catling, 2017. "Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
    8. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    9. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    10. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    11. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    12. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    13. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guthrie, Graeme, 2023. "Optimal adaptation to uncertain climate change," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    2. Rigas, Nikos & Kounetas, Konstantinos, 2021. "The Role of temperature, Precipitation and CO2 emissions on Countries’ Economic Growth and Productivity," MPRA Paper 104727, University Library of Munich, Germany.
    3. Jonathan T. Hawkins-Pierot & Katherine R. H. Wagner, 2022. "Technology Lock-In and Optimal Carbon Pricing," CESifo Working Paper Series 9762, CESifo.
    4. Bustamante, Maria Cecilia & Zucchi, Francesca, 2024. "Dynamic carbon emission management," Working Paper Series 2885, European Central Bank.
    5. Joseph P. Byrne & Prince Asare Vitenu-Sackey, 2024. "The Macroeconomic Impact of Global and Country-Specific Climate Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(3), pages 655-682, March.
    6. Michael Grubb & Rutger-Jan Lange & Nicolas Cerkez & Pablo Salas & Ida Sognnaes, 2020. "Interactions of time and technology as critical determinants of optimal climate change policy," Tinbergen Institute Discussion Papers 20-083/VI, Tinbergen Institute, revised 29 Dec 2022.
    7. Fonseca, Jimeno A. & Nevat, Ido & Peters, Gareth W., 2020. "Quantifying the uncertain effects of climate change on building energy consumption across the United States," Applied Energy, Elsevier, vol. 277(C).
    8. Bård Harstad, 2022. "Trade, Trees, and Contingent Trade Agreements," CESifo Working Paper Series 9596, CESifo.
    9. Jonathan T. Hawkins-Pierot & Katherine R. H. Wagner, 2023. "Technology Lock-In and Costs of Delayed Climate Policy," Working Papers 23-33, Center for Economic Studies, U.S. Census Bureau.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    2. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    3. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.
    4. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    5. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    6. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    7. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Schultes, Anselm & Piontek, Franziska & Soergel, Bjoern & Rogelj, Joeri & Baumstark, Lavinia & Kriegler, Elmar & Edenhofer, Ottmar & Luderer, Gunnar, 2020. "Economic damages from on-going climate change imply deeper near-term emission cuts," MPRA Paper 103655, University Library of Munich, Germany.
    9. Jimmy Karlsson, 2021. "Temperature and Exports: Evidence from the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 311-337, October.
    10. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    11. Mélanie Gittard, 2024. "Impacts of repetitive droughts and the key role of experience : evidence from Nigeria," CIRED Working Papers halshs-04685420, HAL.
    12. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    13. Chiara Falco & Franco Donzelli & Alessandro Olper, 2018. "Climate Change, Agriculture and Migration: A Survey," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    14. Tony Harding & Juan Moreno-Cruz & Martin Quaas & Wilfried Rickels & Sjak Smulders, 2023. "Climate Damages in Convergence-Consistent Growth Projections," CESifo Working Paper Series 10490, CESifo.
    15. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    16. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    17. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    18. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    19. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    20. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.

    More about this item

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:14502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.