IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(2012)0000029009.html
   My bibliography  Save this book chapter

An Expository Note on the Existence of Moments of Fuller and HFUL Estimators

In: Essays in Honor of Jerry Hausman

Author

Listed:
  • John C. Chao
  • Jerry A. Hausman
  • Whitney K. Newey
  • Norman R. Swanson
  • Tiemen Woutersen

Abstract

In a recent paper, Hausman, Newey, Woutersen, Chao, and Swanson (2012) propose a new estimator, HFUL (Heteroscedasticity robust Fuller), for the linear model with endogeneity. This estimator is consistent and asymptotically normally distributed in the many instruments and many weak instruments asymptotics. Moreover, this estimator has moments, just like the estimator by Fuller (1977). The purpose of this note is to discuss at greater length the existence of moments result given in Hausman et al. (2012). In particular, we intend to answer the following questions: Why does LIML not have moments? Why does the Fuller modification lead to estimators with moments? Is normality required for the Fuller estimator to have moments? Why do we need a condition such as Hausman et al. (2012), Assumption 9? Why do we have the adjustment formula?

Suggested Citation

  • John C. Chao & Jerry A. Hausman & Whitney K. Newey & Norman R. Swanson & Tiemen Woutersen, 2012. "An Expository Note on the Existence of Moments of Fuller and HFUL Estimators," Advances in Econometrics, in: Essays in Honor of Jerry Hausman, pages 87-106, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(2012)0000029009
    DOI: 10.1108/S0731-9053(2012)0000029009
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-9053(2012)0000029009/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-9053(2012)0000029009/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-9053(2012)0000029009/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-9053(2012)0000029009
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/S0731-9053(2012)0000029009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    2. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    3. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    2. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    3. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    4. Bekker, Paul A. & Crudu, Federico, 2012. "Symmetric Jackknife Instrumental Variable Estimation," MPRA Paper 37853, University Library of Munich, Germany.
    5. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    6. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    7. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    9. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    10. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Canay, Ivan A., 2010. "Simultaneous selection and weighting of moments in GMM using a trapezoidal kernel," Journal of Econometrics, Elsevier, vol. 156(2), pages 284-303, June.
    12. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
    13. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," Journal of Econometrics, Elsevier, vol. 232(2), pages 346-366.
    14. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," LSE Research Online Documents on Economics 111065, London School of Economics and Political Science, LSE Library.
    15. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    16. Naoto Kunitomo, 2008. "An Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity," CIRJE F-Series CIRJE-F-576, CIRJE, Faculty of Economics, University of Tokyo.
    17. Attanasio, Orazio & Low, Hamish & Sánchez-Marcos, Virginia & Levell, Peter, 2015. "Aggregating Elasticities: Intensive and Extensive Margins of Female Labour Supply," CEPR Discussion Papers 10732, C.E.P.R. Discussion Papers.
    18. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    19. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    20. Jorge Gallego & Stanislao Maldonado & Lorena Trujillo, 2018. "Blessing a Curse? Institutional Reform and Resource Booms in Colombia," Working Papers 122, Peruvian Economic Association.

    More about this item

    Keywords

    Endogeneity; instrumental variables; jackknife estimation; many moments; existence of moments;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(2012)0000029009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.