IDEAS home Printed from https://ideas.repec.org/f/psa654.html
   My authors  Follow this author

Nicola Sartori

Personal Details

First Name:Nicola
Middle Name:
Last Name:Sartori
Suffix:
RePEc Short-ID:psa654
http://www.dst.unive.it/~sartori

Affiliation

(in no particular order)

Scuola Superiore di Economia (SSE-Ca' Foscari) (Advanced School of Economics in Venice)

Venezia, Italy
http://venus.unive.it/sse/
RePEc:edi:ssvenit (more details at EDIRC)

Economics and Organization
School for Advanced Studies in Venice

Venezia, Italy
http://www.isav.it/deo/
RePEc:edi:eosavit (more details at EDIRC)

Dipartimento di Statistica (Department of Statistics)
Università Ca' Foscari Venezia (University Ca' Foscari Venice)

Venezia, Italy
http://www.dst.unive.it/
RePEc:edi:dxvenit (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Sartori, N. & Severini, T.A. & Marras, E., 2010. "An alternative specification of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 575-584, February.
  2. Sartori, Nicola & Salvan, Alberto & Thomaseth, Karl, 2005. "Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 937-953, June.
  3. N. Sartori, 2003. "A note on likelihood asymptotics in normal linear regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 187-195, March.
  4. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Sartori, Nicola & Salvan, Alberto & Thomaseth, Karl, 2005. "Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 937-953, June.

    Cited by:

    1. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.

  2. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.

    Cited by:

    1. N. Sartori, 2003. "A note on likelihood asymptotics in normal linear regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 187-195, March.
    2. Geert Dhaene & Koen Jochmans, 2011. "Profile-score Adjustements for Nonlinearfixed-effect Models," SciencePo Working papers Main hal-01073733, HAL.
    3. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    4. Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
    5. Lee, Yoonseok & Phillips, Peter C.B., 2015. "Model selection in the presence of incidental parameters," Journal of Econometrics, Elsevier, vol. 188(2), pages 474-489.
    6. DHAENE, Geert & JOCHMANS, Koen, 2010. "Split-panel jackknife estimation of fixed-effect models," LIDAM Discussion Papers CORE 2010003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Koen Jochmans, 2016. "Semiparametric Analysis of Network Formation," SciencePo Working papers hal-03393207, HAL.
    8. Geert Dhaene & Koen Jochmans, 2016. "Likelihood Inference in an Autoregression with Fixed Effects," Post-Print hal-03391995, HAL.
    9. Jochmans, K. & Weidner, M., 2019. "Inference on a distribution from noisy draws," Cambridge Working Papers in Economics 1946, Faculty of Economics, University of Cambridge.
    10. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2023. "The role of score and information bias in panel data likelihoods," Journal of Econometrics, Elsevier, vol. 235(2), pages 1215-1238.
    11. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    12. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2019. "Predicting fixed effects in panel probit models," Monash Economics Working Papers 10-19, Monash University, Department of Economics.
    13. Geert Dhaene & Koen Jochmans, 2015. "Profile-score adjustments for incidental-parameter problems," SciencePo Working papers Main hal-03460016, HAL.
    14. Di Caterina, Claudia & Kosmidis, Ioannis, 2019. "Location-adjusted Wald statistics for scalar parameters," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 126-142.
    15. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2021. "Predicting individual effects in fixed effects panel probit models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1109-1145, July.
    16. Federico Martellosio & Grant Hillier, 2019. "Adjusted QMLE for the spatial autoregressive parameter," Papers 1909.08141, arXiv.org.
    17. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    18. F. Bartolucci & R. Bellio & A. Salvan & N. Sartori, 2016. "Modified Profile Likelihood for Fixed-Effects Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1271-1289, August.
    19. Gaurav Sharma & Thomas Mathew & Ionut Bebu, 2014. "Combining Multivariate Bioassays: Accurate Inference Using Small Sample Asymptotics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 152-166, March.
    20. Luigi Pace & Alessandra Salvan & Laura Ventura, 2011. "Adjustments of profile likelihood through predictive densities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 923-937, October.
    21. Yanbo Tang & Nancy Reid, 2020. "Modified likelihood root in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1349-1369, December.
    22. Shi, Jianwei & Qin, Guoyou & Zhu, Huichen & Zhu, Zhongyi, 2021. "Communication-efficient distributed M-estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    23. Lee, Woojoo & Shi, Jian Qing & Lee, Youngjo, 2010. "Approximate conditional inference in mixed-effects models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 173-184, January.
    24. Xuan Leng & Jiaming Mao & Yutao Sun, 2023. "Debiased inference for dynamic nonlinear models with two-way fixed effects," Papers 2305.03134, arXiv.org, revised Oct 2023.
    25. Stein, Markus Chagas & da Silva, Michel Ferreira & Duczmal, Luiz Henrique, 2014. "Alternatives to the usual likelihood ratio test in mixed linear models," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 184-197.
    26. Ventura, Laura & Sartori, Nicola & Racugno, Walter, 2013. "Objective Bayesian higher-order asymptotics in models with nuisance parameters," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 90-96.
    27. Manuel Arellano & Jinyong Hahn, 2005. "Understanding Bias in Nonlinear Panel Models: Some Recent Developments," Working Papers wp2005_0507, CEMFI.
    28. De Bin, Riccardo, 2016. "On the equivalence between conditional and random-effects likelihoods in exponential families," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 34-38.
    29. Sartori, N. & Severini, T.A. & Marras, E., 2010. "An alternative specification of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 575-584, February.
    30. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.
    31. Ruggero Bellio & Annamaria Guolo, 2016. "Integrated Likelihood Inference in Small Sample Meta-analysis for Continuous Outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 191-201, March.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Nicola Sartori should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.