IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v138y2019icp126-142.html
   My bibliography  Save this article

Location-adjusted Wald statistics for scalar parameters

Author

Listed:
  • Di Caterina, Claudia
  • Kosmidis, Ioannis

Abstract

Inference about a scalar parameter of interest is a core statistical task that has attracted immense research in statistics. The Wald statistic is a prime candidate for the task, on the grounds of the asymptotic validity of the standard normal approximation to its finite-sample distribution, simplicity and low computational cost. It is well known, though, that this normal approximation can be inadequate, especially when the sample size is small or moderate relative to the number of parameters. A novel, algebraic adjustment to the Wald statistic is proposed, delivering significant improvements in inferential performance with only small implementation and computational overhead, predominantly due to additional matrix multiplications. The Wald statistic is viewed as an estimate of a transformation of the model parameters and is appropriately adjusted, using either maximum likelihood or reduced-bias estimators, bringing its expectation asymptotically closer to zero. The location adjustment depends on the expected information, an approximation to the bias of the estimator, and the derivatives of the transformation, which are all either readily available or easily obtainable in standard software for a wealth of models. An algorithm for the implementation of the location-adjusted Wald statistics in general models is provided, as well as a bootstrap scheme for the further scale correction of the location-adjusted statistic. Ample analytical and numerical evidence is presented for the adoption of the location-adjusted statistic in prominent modelling settings, including inference about log-odds and binomial proportions, logistic regression in the presence of nuisance parameters, beta regression, and gamma regression. The location-adjusted Wald statistics are used for the construction of significance maps for the analysis of multiple sclerosis lesions from MRI data.

Suggested Citation

  • Di Caterina, Claudia & Kosmidis, Ioannis, 2019. "Location-adjusted Wald statistics for scalar parameters," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 126-142.
  • Handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:126-142
    DOI: 10.1016/j.csda.2019.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731930088X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    2. Cordeiro, Gauss M. & Vasconcellos, Klaus L. P., 1997. "Bias correction for a class of multivariate nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 155-164, September.
    3. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    4. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    5. Ioannis Kosmidis & David Firth, 2011. "Multinomial logit bias reduction via the Poisson log-linear model," Biometrika, Biometrika Trust, vol. 98(3), pages 755-759.
    6. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.
    7. Lee, Stephen M.S. & Young, G. Alastair, 2005. "Parametric bootstrapping with nuisance parameters," Statistics & Probability Letters, Elsevier, vol. 71(2), pages 143-153, February.
    8. Ioannis Kosmidis, 2014. "Improved estimation in cumulative link models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 169-196, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    2. Emilio Gómez-Déniz & Jorge V Pérez-Rodríguez & José Boza-Chirino, 2020. "Modelling tourist expenditure at origin and destination," Tourism Economics, , vol. 26(3), pages 437-460, May.
    3. Barreto-Souza, Wagner & Vasconcellos, Klaus L.P., 2011. "Bias and skewness in a general extreme-value regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1379-1393, March.
    4. Chen, Kee Kuo & Chiu, Rong-Her & Chang, Ching-Ter, 2017. "Using beta regression to explore the relationship between service attributes and likelihood of customer retention for the container shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 1-16.
    5. Zhang, Rui & Shonkwiler, J. Scott, 2017. "Bias Correction of Welfare measures in Non-Market Valuation: Comparison of the Delta Method, Jackknife and Bootstrap," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258099, Agricultural and Applied Economics Association.
    6. Tyrväinen, Timo, 1991. "Unions, wages and employment: evidence from Finland," Bank of Finland Research Discussion Papers 16/1991, Bank of Finland.
    7. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    8. MacKinnon, J G, 1989. "Heteroskedasticity-Robust Tests for Structural Change," Empirical Economics, Springer, vol. 14(2), pages 77-92.
    9. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    10. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    11. Marc Poitras, 2004. "The Impact of Macroeconomic Announcements on Stock Prices: In Search of State Dependence," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 549-565, January.
    12. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    13. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    14. Robert L. Paige & A. Alexandre Trindade & P. Harshini Fernando, 2009. "Saddlepoint‐Based Bootstrap Inference for Quadratic Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 98-111, March.
    15. Angrist, Josh & Lavy, Victor, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," CEPR Discussion Papers 3827, C.E.P.R. Discussion Papers.
    16. Koetter, Michael & Krause, Thomas & Tonzer, Lena, 2019. "Delay determinants of European Banking Union implementation," European Journal of Political Economy, Elsevier, vol. 58(C), pages 1-20.
    17. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    18. Cooney, John W. & Moeller, Thomas & Stegemoller, Mike, 2009. "The underpricing of private targets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 51-66, July.
    19. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    20. R. R. Croes & Y. J. F. M. Krabbe-Alkemade & M. C. Mikkers, 2018. "Competition and quality indicators in the health care sector: empirical evidence from the Dutch hospital sector," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(1), pages 5-19, January.
    21. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:126-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.