IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i6d10.1007_s00180-023-01420-x.html
   My bibliography  Save this article

Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: an optimal control approach

Author

Listed:
  • Quentin Clairon

    (University of Bordeaux
    Vaccine Research Institute)

  • Chloé Pasin

    (University of Zurich)

  • Irene Balelli

    (EPIONE Research Project)

  • Rodolphe Thiébaut

    (University of Bordeaux
    Vaccine Research Institute)

  • Mélanie Prague

    (University of Bordeaux
    Vaccine Research Institute)

Abstract

We present a method for parameter estimation for nonlinear mixed-effects models based on ordinary differential equations (NLME-ODEs). It aims to regularize the estimation problem in the presence of model misspecification and practical identifiability issues, while avoiding the need to know or estimate initial conditions as nuisance parameters. To this end, we define our estimator as a minimizer of a cost function that incorporates a possible gap between the assumed population-level model and the specific individual dynamics. The computation of the cost function leads to formulate and solve optimal control problems at the subject level. Compared to the maximum likelihood method, we show through simulation examples that our method improves the estimation accuracy in possibly partially observed systems with unknown initial conditions or poorly identifiable parameters with or without model error. We conclude this work with a real-world application in which we model the antibody concentration after Ebola virus vaccination.

Suggested Citation

  • Quentin Clairon & Chloé Pasin & Irene Balelli & Rodolphe Thiébaut & Mélanie Prague, 2024. "Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: an optimal control approach," Computational Statistics, Springer, vol. 39(6), pages 2975-3005, September.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01420-x
    DOI: 10.1007/s00180-023-01420-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01420-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01420-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian E. Raftery & Le Bao, 2010. "Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance Sampling," Biometrics, The International Biometric Society, vol. 66(4), pages 1162-1173, December.
    2. J. Guedj & R. Thiébaut & D. Commenges, 2007. "Maximum Likelihood Estimation in Dynamical Models of HIV," Biometrics, The International Biometric Society, vol. 63(4), pages 1198-1206, December.
    3. Comets, Emmanuelle & Lavenu, Audrey & Lavielle, Marc, 2017. "Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i03).
    4. Yangxin Huang & Getachew Dagne, 2011. "A Bayesian Approach to Joint Mixed-Effects Models with a Skew-Normal Distribution and Measurement Errors in Covariates," Biometrics, The International Biometric Society, vol. 67(1), pages 260-269, March.
    5. Mélanie Prague & Daniel Commenges & Julia Drylewicz & Rodolphe Thiébaut, 2012. "Treatment Monitoring of HIV-Infected Patients based on Mechanistic Models," Biometrics, The International Biometric Society, vol. 68(3), pages 902-911, September.
    6. Kurtz, Thomas G., 1978. "Strong approximation theorems for density dependent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 6(3), pages 223-240, February.
    7. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.
    8. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    2. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    3. Huang Yangxin & Chen Jiaqing & Yan Chunning, 2012. "Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-30, November.
    4. Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & Thiébaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.
    5. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    6. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    7. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    8. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    9. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    10. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    12. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    13. repec:jss:jstsof:43:i02 is not listed on IDEAS
    14. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    16. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    17. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2021. "Predicting individual effects in fixed effects panel probit models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1109-1145, July.
    18. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    19. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Xuan Leng & Jiaming Mao & Yutao Sun, 2023. "Debiased Inference for Dynamic Nonlinear Panels with Multi-dimensional Heterogeneities," Papers 2305.03134, arXiv.org, revised Nov 2024.
    21. Kunz, J.S.; & Staub, K.E.; & Winkelmann, R.;, 2018. "Predicting fixed effects in panel probit models," Health, Econometrics and Data Group (HEDG) Working Papers 18/23, HEDG, c/o Department of Economics, University of York.
    22. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    23. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    24. Pascal Deboeck & Steven Boker, 2010. "Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 420-437, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01420-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.