IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i1p173-184.html
   My bibliography  Save this article

Approximate conditional inference in mixed-effects models with binary data

Author

Listed:
  • Lee, Woojoo
  • Shi, Jian Qing
  • Lee, Youngjo

Abstract

The conditional likelihood approach is a sensible choice for a hierarchical logistic regression model or other generalized regression models with binary data. However, its heavy computational burden limits its use, especially for the related mixed-effects model. A modified profile likelihood is used as an accurate approximation to conditional likelihood, and then the use of two methods for inferences for the hierarchical generalized regression models with mixed effects is proposed. One is based on a hierarchical likelihood and Laplace approximation method, and the other is based on a Markov chain Monte Carlo EM algorithm. The methods are applied to a meta-analysis model for trend estimation and the model for multi-arm trials. A simulation study is conducted to illustrate the performance of the proposed methods.

Suggested Citation

  • Lee, Woojoo & Shi, Jian Qing & Lee, Youngjo, 2010. "Approximate conditional inference in mixed-effects models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 173-184, January.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:173-184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00270-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Qing Shi & John Copas, 2002. "Publication bias and meta‐analysis for 2×2 tables: an average Markov chain Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 221-236, May.
    2. Shih, Joanna H. & Lu, Shou-En, 2009. "Semiparametric estimation of a nested random effects model for the analysis of multi-level clustered failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3864-3871, September.
    3. J. G. Liao, 1999. "A Hierarchical Bayesian Model for Combining Multiple 2 × 2 Tables Using Conditional Likelihoods," Biometrics, The International Biometric Society, vol. 55(1), pages 268-272, March.
    4. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.
    5. Ruggero Bellio & Nicola Sartori, 2003. "Extending conditional likelihood in models for stratified binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(2), pages 121-132, December.
    6. Noh, Maengseok & Lee, Youngjo, 2007. "REML estimation for binary data in GLMMs," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 896-915, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    2. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    3. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    4. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    5. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    6. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    7. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    8. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2021. "Predicting individual effects in fixed effects panel probit models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1109-1145, July.
    9. Xuan Leng & Jiaming Mao & Yutao Sun, 2023. "Debiased inference for dynamic nonlinear models with two-way fixed effects," Papers 2305.03134, arXiv.org, revised Oct 2023.
    10. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    11. Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    12. Kunz, J.S.; & Staub, K.E.; & Winkelmann, R.;, 2018. "Predicting fixed effects in panel probit models," Health, Econometrics and Data Group (HEDG) Working Papers 18/23, HEDG, c/o Department of Economics, University of York.
    13. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    14. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    15. Geert Dhaene & Koen Jochmans, 2015. "Profile-score adjustments for incidental-parameter problems," Sciences Po publications info:hdl:2441/323dml6suu9, Sciences Po.
    16. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    17. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    18. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    19. N. Sartori, 2003. "A note on likelihood asymptotics in normal linear regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 187-195, March.
    20. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    21. J. G. Liao & Duanping Liao & Arthur Berg, 2016. "Calibrated Bayes Factors in Assessing Genetic Association Models," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 250-256, July.
    22. repec:spo:wpecon:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    23. Chan, Moon-tong & Yu, Dalei & Yau, Kelvin K.W., 2015. "Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 173-186.
    24. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    25. Yanbo Tang & Nancy Reid, 2020. "Modified likelihood root in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1349-1369, December.
    26. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:173-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.