IDEAS home Printed from https://ideas.repec.org/f/pki328.html
   My authors  Follow this author

Min Seong Kim

Not to be confused with: Minseong Kim, Minseong Kim

Personal Details

First Name:Min Seong
Middle Name:
Last Name:Kim
Suffix:
RePEc Short-ID:pki328
[This author has chosen not to make the email address public]
http://minseongkim.weebly.com

Affiliation

Department of Economics
University of Connecticut

Storrs, Connecticut (United States)
http://www.econ.uconn.edu/
RePEc:edi:deuctus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Zhenhao Gong & Min Seong Kim, 2024. "Improved Inference for Interactive Fixed Effects Model under Cross-Sectional Dependence," Working papers 2024-02, University of Connecticut, Department of Economics.
  2. Zhenhao Gong & Min Seong Kim, 2024. "Policy Analysis Using Multilevel Regression Models with Group Interactive Fixed Effects," Working papers 2024-01, University of Connecticut, Department of Economics.
  3. Timothy Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2022. "Bootstrap Inference Under Cross Sectional Dependence," Working papers 2022-14, University of Connecticut, Department of Economics.
  4. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
  5. Min Seong Kim & Yixiao Sun, 2012. "Asymptotic F Test in a GMM Framework with Cross Sectional Dependence," Working Papers 032, Toronto Metropolitan University, Department of Economics.
  6. Min Seong Kim & Yixiao Sun, 2011. "Heteroskedasticity and Spatiotemporal Dependence Robust Inference for Linear Panel Models with Fixed Effects," Working Papers 029, Toronto Metropolitan University, Department of Economics.
  7. Sun, Yixiao & Kim, Min Seong, 2009. "k-step Bootstrap Bias Correction for Fixed Effects Estimators in Nonlinear Panel Models," University of California at San Diego, Economics Working Paper Series qt9gn6n5mr, Department of Economics, UC San Diego.

Articles

  1. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
  2. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
  3. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Min Seong Kim & Yixiao Sun, 2012. "Asymptotic F Test in a GMM Framework with Cross Sectional Dependence," Working Papers 032, Toronto Metropolitan University, Department of Economics.

    Cited by:

    1. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.
    2. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2016. "A Fixed-bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data," University of California at San Diego, Economics Working Paper Series qt2240n3n5, Department of Economics, UC San Diego.
    3. Hwang, Jungbin & Sun, Yixiao, 2015. "Asymptotic F and t Tests in an Efficient GMM Setting," University of California at San Diego, Economics Working Paper Series qt1c62d8xf, Department of Economics, UC San Diego.
    4. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    5. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    6. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    7. Julian Martinez-Iriarte & Yixiao Sun & Xuexin Wang, 2019. "Asymptotic F Tests under Possibly Weak Identification," Working Papers 2019-03-12, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    8. Liu, Cheng & Sun, Yixiao, 2019. "A Simple and Trustworthy Asymptotic t Test in Difference-in-Differences Regressions," University of California at San Diego, Economics Working Paper Series qt0ck2109g, Department of Economics, UC San Diego.
    9. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    10. Hwang., Jungbin & Sun, Yixiao, 2017. "Simple, Robust, and Accurate F and t Tests in Cointegrated Systems," University of California at San Diego, Economics Working Paper Series qt83b4q8pk, Department of Economics, UC San Diego.

  2. Min Seong Kim & Yixiao Sun, 2011. "Heteroskedasticity and Spatiotemporal Dependence Robust Inference for Linear Panel Models with Fixed Effects," Working Papers 029, Toronto Metropolitan University, Department of Economics.

    Cited by:

    1. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
    2. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    3. Greenaway-McGrevy, Ryan & Sorensen, Kade, 2021. "A Time-Varying Hedonic Approach to quantifying the effects of loss aversion on house prices," Economic Modelling, Elsevier, vol. 99(C).
    4. J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.
    5. Javier Hidalgo & Marcia M Schafgans, 2015. "Inference and Testing Breaks in Large Dynamic Panels with Strong Cross Sectional Dependence," STICERD - Econometrics Paper Series /2015/583, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.
    7. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2016. "A Fixed-bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data," University of California at San Diego, Economics Working Paper Series qt2240n3n5, Department of Economics, UC San Diego.
    8. Dayton M. Lambert, 2020. "Dynamic panel estimation of a regional adjustment model with spatial-temporal robust covariance," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 245-265, December.
    9. Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
    10. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," LSE Research Online Documents on Economics 107426, London School of Economics and Political Science, LSE Library.
    11. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    12. David Powell, 2017. "Inference with Correlated Clusters," Working Papers WR-1137-1, RAND Corporation.
    13. Ryan Greenaway-McGrevy & Kade Sorensen, 2021. "A spatial model averaging approach to measuring house prices," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-32, December.
    14. Julian Martinez-Iriarte & Yixiao Sun & Xuexin Wang, 2019. "Asymptotic F Tests under Possibly Weak Identification," Working Papers 2019-03-12, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    15. Liu, Cheng & Sun, Yixiao, 2019. "A Simple and Trustworthy Asymptotic t Test in Difference-in-Differences Regressions," University of California at San Diego, Economics Working Paper Series qt0ck2109g, Department of Economics, UC San Diego.
    16. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    17. Oguzhan Akgun & Alain Pirotte & Giovanni Urga & Zhenlin Yang, 2020. "Equal Predictive Ability Tests Based on Panel Data with Applications to OECD and IMF Forecasts," Papers 2003.02803, arXiv.org, revised Feb 2023.
    18. Stigler, Matthieu M., 2018. "Supply response at the field-level: disentangling area and yield effects," 2018 Annual Meeting, August 5-7, Washington, D.C. 274343, Agricultural and Applied Economics Association.
    19. D. M. Lambert & C. N. Boyer & L. He, 2016. "Spatial-temporal heteroskedastic robust covariance estimation for Markov transition probabilities: an application examining land use change," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 353-362, October.
    20. Bruno Ferman, 2019. "Inference in Difference-in-Differences: How Much Should We Trust in Independent Clusters?," Papers 1909.01782, arXiv.org, revised Sep 2022.
    21. Ladislava Grochová & Luboš Střelec, 2013. "Heteroskedasticity, temporal and spatial correlation matter," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2151-2155.
    22. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    23. Jiti Gao & Kai Xia, 2017. "Heterogeneous panel data models with cross-sectional dependence," Monash Econometrics and Business Statistics Working Papers 16/17, Monash University, Department of Econometrics and Business Statistics.
    24. Gao, Jiti & Xia, Kai & Zhu, Huanjun, 2020. "Heterogeneous panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 219(2), pages 329-353.
    25. Hidalgo, Javier & Schafgans, Marcia M. A., 2017. "Inference without smoothing for large panels with cross-sectional and temporal dependence," LSE Research Online Documents on Economics 87748, London School of Economics and Political Science, LSE Library.
    26. Feng, Guohua & Peng, Bin & Su, Liangjun & Yang, Thomas Tao, 2019. "Semi-parametric single-index panel data models with interactive fixed effects: Theory and practice," Journal of Econometrics, Elsevier, vol. 212(2), pages 607-622.
    27. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    28. Lu, Xun & Su, Liangjun, 2020. "Determining individual or time effects in panel data models," Journal of Econometrics, Elsevier, vol. 215(1), pages 60-83.

  3. Sun, Yixiao & Kim, Min Seong, 2009. "k-step Bootstrap Bias Correction for Fixed Effects Estimators in Nonlinear Panel Models," University of California at San Diego, Economics Working Paper Series qt9gn6n5mr, Department of Economics, UC San Diego.

    Cited by:

    1. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.

Articles

  1. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    See citations under working paper version above.
  2. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.

    Cited by:

    1. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    2. Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
    3. Hwang, Jungbin & Sun, Yixiao, 2015. "Asymptotic F and t Tests in an Efficient GMM Setting," University of California at San Diego, Economics Working Paper Series qt1c62d8xf, Department of Economics, UC San Diego.
    4. Xiaohong Chen & Zhipeng Liao, 2015. "Sieve Semiparametric Two-Step GMM under Weak Dependence," Cowles Foundation Discussion Papers 2012, Cowles Foundation for Research in Economics, Yale University.
    5. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.
    6. Wei-Ming Lee & Chung-Ming Kuan, 2006. "Testing Over-Identifying Restrictions without Consistent Estimation of the Asymptotic Covariance Matrix," IEAS Working Paper : academic research 06-A009, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    7. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    8. Julian Martinez-Iriarte & Yixiao Sun & Xuexin Wang, 2019. "Asymptotic F Tests under Possibly Weak Identification," Working Papers 2019-03-12, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    9. Liu, Cheng & Sun, Yixiao, 2019. "A Simple and Trustworthy Asymptotic t Test in Difference-in-Differences Regressions," University of California at San Diego, Economics Working Paper Series qt0ck2109g, Department of Economics, UC San Diego.
    10. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    11. Yixiao Sun & Xuexin Wang, 2019. "An Asymptotically F-Distributed Chow Test in the Presence of Heteroscedasticity and Autocorrelation," Papers 1911.03771, arXiv.org.
    12. Hwang., Jungbin & Sun, Yixiao, 2017. "Simple, Robust, and Accurate F and t Tests in Cointegrated Systems," University of California at San Diego, Economics Working Paper Series qt83b4q8pk, Department of Economics, UC San Diego.
    13. Sun, Yixiao & Kaplan, David M., 2011. "A New Asymptotic Theory for Vector Autoregressive Long-run Variance Estimation and Autocorrelation Robust Testing," University of California at San Diego, Economics Working Paper Series qt8cx0t4gc, Department of Economics, UC San Diego.
    14. Bing Su & Fukang Zhu & Ke Zhu, 2023. "Statistical inference for the logarithmic spatial heteroskedasticity model with exogenous variables," Papers 2301.06658, arXiv.org.
    15. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.

  3. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.

    Cited by:

    1. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
    2. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    3. Mullally, Conner, 2011. "Development in the Midst of Drought: Evaluating an Agricultural Extension and Credit Program in Nicaragua," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103799, Agricultural and Applied Economics Association.
    4. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    5. Yixiao Sun & Min Seong Kim, 2015. "Asymptotic F-Test in a GMM Framework with Cross-Sectional Dependence," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 210-233, March.
    6. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.
    7. Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
    8. Marcondes dos Santos, Herivelto Tiago & Perrella Balestieri, José Antônio, 2018. "Spatial analysis of sustainable development goals: A correlation between socioeconomic variables and electricity use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 367-376.
    9. Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
    10. Andreasen, Martin M. & Christensen, Bent Jesper, 2015. "The SR approach: A new estimation procedure for non-linear and non-Gaussian dynamic term structure models," Journal of Econometrics, Elsevier, vol. 184(2), pages 420-451.
    11. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    12. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    13. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    14. Coro Chasco & Julie Le Gallo & Fernando López, 2018. "A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madrid," Post-Print hal-01868546, HAL.
    15. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2021. "Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling," Papers 2106.03156, arXiv.org, revised Oct 2021.
    16. Harry Kelejian, 2014. "Omitted factors and spatial lags in the dependent variable," Letters in Spatial and Resource Sciences, Springer, vol. 7(1), pages 23-33, March.
    17. Dorn, Sabrina & Egger, Peter H., 2014. "Small-sample inference with spatial HAC estimators," Economics Letters, Elsevier, vol. 125(2), pages 236-239.
    18. Rabovic, R. & Cizek, P., 2020. "Estimation of Spatial Sample Selection Models: A Partial Maximum Likelihood Approach," Cambridge Working Papers in Economics 2012, Faculty of Economics, University of Cambridge.
    19. Deepa Dhume Datta & Wenxin Du, 2012. "Nonparametric HAC estimation for time series data with missing observations," International Finance Discussion Papers 1060, Board of Governors of the Federal Reserve System (U.S.).
    20. Rita Yi Man Li & Herru Ching Yu Li, 2018. "Have Housing Prices Gone with the Smelly Wind? Big Data Analysis on Landfill in Hong Kong," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    21. A Salim, Ruhu & Mahfuz Kabir, Mohammad, 2011. "Does More Trade Potential Remain in Arab States of the Gulf ?," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 217-243.
    22. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    23. Morgan Kelly, 2020. "Understanding Persistence," Working Papers 202023, School of Economics, University College Dublin.
    24. Ladislava Grochová & Luboš Střelec, 2013. "Heteroskedasticity, temporal and spatial correlation matter," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2151-2155.
    25. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    26. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    27. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    28. Harry H. Kelejian & Gianfranco Piras, 2016. "A J test for dynamic panel model with fixed effects, and nonparametric spatial and time dependence," Empirical Economics, Springer, vol. 51(4), pages 1581-1605, December.
    29. Liu, Tuo & Lee, Lung-fei, 2019. "A likelihood ratio test for spatial model selection," Journal of Econometrics, Elsevier, vol. 213(2), pages 434-458.
    30. Tariq Hussain & Khizra Rana, 2022. "Rent Seeking Policy, Institutions and Corruption in Specific Countries of the World," Journal of Policy Research (JPR), Research Foundation for Humanity (RFH), vol. 8(4), pages 283-291, December.
    31. Zhenhao Gong & Min Seong Kim, 2024. "Improved Inference for Interactive Fixed Effects Model under Cross-Sectional Dependence," Working papers 2024-02, University of Connecticut, Department of Economics.
    32. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Featured entries

This author is featured on the following reading lists, publication compilations, Wikipedia, or ReplicationWiki entries:
  1. Korean Economists

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 6 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (6) 2011-10-01 2012-09-03 2021-03-29 2022-08-22 2024-02-26 2024-03-04. Author is listed
  2. NEP-FOR: Forecasting (1) 2021-03-29
  3. NEP-INV: Investment (1) 2024-02-26
  4. NEP-ORE: Operations Research (1) 2021-03-29
  5. NEP-URE: Urban and Real Estate Economics (1) 2012-09-03

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Min Seong Kim should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.