IDEAS home Printed from https://ideas.repec.org/p/ran/wpaper/wr-1137-1.html
   My bibliography  Save this paper

Inference with Correlated Clusters

Author

Listed:
  • David Powell

Abstract

This paper introduces a method which permits valid inference given a finite number of heterogeneous, correlated clusters. Many inference methods assume clusters are asymptotically independent or model dependence across clusters as a function of a distance metric. With panel data, these restrictions are unnecessary. This paper relies on a test statistic using the mean of the cluster-specific scores normalized by the variance and simulating the distribution of this statistic. To account for cross-cluster dependence, the relationship between each cluster is estimated, permitting the independent component of each cluster to be isolated. The method is simple to implement, can be employed for linear and nonlinear estimators, places no restrictions on the strength of the correlations across clusters, and does not require prior knowledge of which clusters are correlated or even the existence of independent clusters. In simulations, the procedure rejects at the appropriate rate even in the presence of highly-correlated clusters.

Suggested Citation

  • David Powell, 2017. "Inference with Correlated Clusters," Working Papers WR-1137-1, RAND Corporation.
  • Handle: RePEc:ran:wpaper:wr-1137-1
    as

    Download full text from publisher

    File URL: https://www.rand.org/content/dam/rand/pubs/working_papers/WR1100/WR1137-1/RAND_WR1137-1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Meer & Jeremy West, 2016. "Effects of the Minimum Wage on Employment Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 51(2), pages 500-522.
    2. repec:clg:wpaper:2013-20 is not listed on IDEAS
    3. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    5. David Neumark & JM Salas & William Wascher, 2014. "More on recent evidence on the effects of minimum wages in the United States," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 3(1), pages 1-26, December.
    6. Matthew D. Webb, 2023. "Reworking wild bootstrap‐based inference for clustered errors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
    7. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    8. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    9. Parente Paulo M.D.C. & Santos Silva João M.C., 2016. "Quantile Regression with Clustered Data," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 1-15, January.
    10. repec:esx:essedp:728 is not listed on IDEAS
    11. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    12. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    13. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    14. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    15. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    16. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    17. Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012. "Clustering, Spatial Correlations, and Randomization Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
    18. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    19. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    20. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B. & Vogelsang, Timothy J., 2016. "FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS," Econometric Theory, Cambridge University Press, vol. 32(1), pages 154-186, February.
    21. David Powell, 2016. "Synthetic Control Estimation Beyond Case Studies Does the Minimum Wage Reduce Employment?," Working Papers 1142, RAND Corporation.
    22. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    23. David Powell, 2016. "Synthetic Control Estimation Beyond Case Studies Does the Minimum Wage Reduce Employment?," Working Papers WR-1142, RAND Corporation.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    2. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.
    3. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
    4. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    5. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, Wiley Blackwell, vol. 56(4), pages 1139-1203, September.
    6. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    7. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    8. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    9. Ladislava Grochová & Luboš Střelec, 2013. "Heteroskedasticity, temporal and spatial correlation matter," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2151-2155.
    10. J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.
    11. Moscone, F. & Tosetti, Elisa, 2015. "Robust estimation under error cross section dependence," Economics Letters, Elsevier, vol. 133(C), pages 100-104.
    12. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    13. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," LSE Research Online Documents on Economics 107426, London School of Economics and Political Science, LSE Library.
    14. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    15. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    16. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    18. Kaicheng Chen & Timothy J. Vogelsang, 2023. "Fixed-b Asymptotics for Panel Models with Two-Way Clustering," Papers 2309.08707, arXiv.org, revised Aug 2024.
    19. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    20. Brewer Mike & Crossley Thomas F. & Joyce Robert, 2018. "Inference with Difference-in-Differences Revisited," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-16, January.

    More about this item

    Keywords

    Finite Inference; Correlated Clusters; Fixed Effects; Panel Data; Hypothesis;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ran:wpaper:wr-1137-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benson Wong (email available below). General contact details of provider: https://edirc.repec.org/data/lpranus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.