IDEAS home Printed from https://ideas.repec.org/b/zbw/esthes/26754.html
   My bibliography  Save this book

Relevanz von Werbeeinstellungen zur Kontrolle langfristiger Werbewirkung im Fall etablierter Konsumgütermarken

Author

Listed:
  • Schlichthorst, Marisa

Abstract

Die Werbeeinstellung gilt als besonders verhaltensprägend und zugleich beeinflussbar durch die werbliche Kommunikation. Damit wird ihr eine zentrale Rolle als Vermittler von Werbewirkung zugesprochen. Allerdings wurde diese Vermittlerrolle bisher nur bei neuen Produkten mit unbekannten Werbereizen und auf Basis von Querschnittsdaten empirisch nachgewiesen. Für etablierte Konsumgüter, für die bereits ein stabiles Markenkonzept besteht, ist die Rolle der Werbeeinstellung nach wie vor ungewiss. Bei steigenden Werbeinvestitionen für Konsumgüter ist die Relevanz der Werbeeinstellung unter dem Gesichtspunkt adäquater Wirkungskontrolle auch heute noch von großer Bedeutung. Marisa Schlichthorst präsentiert ein geeignetes Modell für die Kontrolle von langfristiger TV-Werbewirkung bei etablierten Konsumgütern. Bereits bestehende Wirkungshypothesen zur Rolle der Werbeeinstellung werden gegeneinander getestet und um relevante exogene Einflussgrößen, wie die Werbevariationen über die Zeit, erweitert. Anhand kovarianzbasierter Analysen auf Basis von Werbe-Trackingdaten verdeutlicht sie damit die langfristigen Wirkungszusammenhänge unter realistischen Werbebedingungen. Entgegen bisheriger Annahmen spielen allgemeine Erinnerungen und Gefühle bezüglich der Werbung eine bedeutendere Rolle für die Beeinflussung des Kaufverhaltens als die Werbeeinstellung und eignen sich daher besser zur kontinuierlichen Wirkungskontrolle. Die Intensität von Werbevariationen beeinflusst die Werbeeinstellung positiv. Je häufiger allerdings starke Variationen durchgeführt werden, desto instabiler werden die Veränderungen in den Werbeeinstellungen.

Suggested Citation

  • Schlichthorst, Marisa, 2006. "Relevanz von Werbeeinstellungen zur Kontrolle langfristiger Werbewirkung im Fall etablierter Konsumgütermarken," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 26754, September.
  • Handle: RePEc:zbw:esthes:26754
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/26754/1/525982981.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    2. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    3. Zhou, Xingcai & Liu, Xinsheng, 2008. "The EM algorithm for the extended finite mixture of the factor analyzers model," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3939-3953, April.
    4. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    5. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    6. Ke-Hai Yuan & Peter Bentler, 2000. "Robust mean and covariance structure analysis through iteratively reweighted least squares," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 43-58, March.
    7. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    8. Asim Ansari & Kamel Jedidi & Sharan Jagpal, 2000. "A Hierarchical Bayesian Methodology for Treating Heterogeneity in Structural Equation Models," Marketing Science, INFORMS, vol. 19(4), pages 328-347, August.
    9. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    10. Silvia Cagnone & Cinzia Viroli, 2014. "A factor mixture model for analyzing heterogeneity and cognitive structure of dementia," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 1-20, January.
    11. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    12. Dirk Temme & Lutz Hildebrandt, 2009. "Gruppenvergleiche bei hypothetischen Konstrukten — Die Prüfung der Übereinstimmung von Messmodellen mit der Strukturgleichungsmethodik," Schmalenbach Journal of Business Research, Springer, vol. 61(2), pages 138-185, March.
    13. Hong-Tu Zhu & Sik-Yum Lee, 2001. "A Bayesian analysis of finite mixtures in the LISREL model," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 133-152, March.
    14. Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
    15. Xia, Ye-Mao & Tang, Nian-Sheng, 2019. "Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 190-211.
    16. Fokoué, Ernest, 2005. "Mixtures of factor analyzers: an extension with covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 370-384, August.
    17. Anindita Chakravarty & Rajdeep Grewal & V. Sambamurthy, 2013. "Information Technology Competencies, Organizational Agility, and Firm Performance: Enabling and Facilitating Roles," Information Systems Research, INFORMS, vol. 24(4), pages 976-997, December.
    18. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    19. Kim De Roover & Eva Ceulemans & Marieke Timmerman & John Nezlek & Patrick Onghena, 2013. "Modeling Differences in the Dimensionality of Multiblock Data by Means of Clusterwise Simultaneous Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 648-668, October.
    20. Kim, Hyoung-Moon & Maadooliat, Mehdi & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2016. "Skewed factor models using selection mechanisms," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 162-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esthes:26754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.