IDEAS home Printed from https://ideas.repec.org/a/spr/sjobre/v61y2009i2d10.1007_bf03372818.html
   My bibliography  Save this article

Gruppenvergleiche bei hypothetischen Konstrukten — Die Prüfung der Übereinstimmung von Messmodellen mit der Strukturgleichungsmethodik

Author

Listed:
  • Dirk Temme

    (Humboldt-Universität zu Berlin)

  • Lutz Hildebrandt

    (Humboldt-Universität zu Berlin)

Abstract

Zusammenfassung Bei einem Vergleich von Gruppen anhand hypothetischer Konstrukte muss gewährleistet sein, dass die Messmodelle in den Gruppen gleich sind. Andernfalls besteht die Gefahr, dass falsche Rückschlüsse über die Unterschiede auf der latenten Ebene gezogen werden. Dieser Beitrag bietet einen state-of-the-Art zur Überprüfung der Messinvarianz mit der Mehrgruppenanalyse konfirmatorischer Faktormodelle. Ein Schwerpunkt liegt dabei auf der Ermittlung nichtinvarianter Indikatoren, wobei unterschiedliche Ansätze zur Identifikation latenter skalen sowie die wesentlichen Teststrategien verglichen werden. Die empirische studie zur Invarianz eines Messmodells der psychologischen Markenstärke („Brand Potential Index“) zeigt, dass bei einem Vergleich loyaler und nichtloyaler Konsumenten die Indikatoren Kaufabsicht und Weiterempfehlungsbereitschaft nichtinvariant sind. Aufgrund der Messinvarianz der übrigen Indikatoren sind aber sowohl Vergleiche auf der latenten Ebene als auch direkte Mittelwertvergleiche für die invarianten Indikatoren zulässig.

Suggested Citation

  • Dirk Temme & Lutz Hildebrandt, 2009. "Gruppenvergleiche bei hypothetischen Konstrukten — Die Prüfung der Übereinstimmung von Messmodellen mit der Strukturgleichungsmethodik," Schmalenbach Journal of Business Research, Springer, vol. 61(2), pages 138-185, March.
  • Handle: RePEc:spr:sjobre:v:61:y:2009:i:2:d:10.1007_bf03372818
    DOI: 10.1007/BF03372818
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF03372818
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/BF03372818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ratchford, Brian T, 2001. "The Economics of Consumer Knowledge," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 27(4), pages 397-411, March.
    2. Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
    3. William Meredith, 1993. "Measurement invariance, factor analysis and factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 525-543, December.
    4. Jarvis, Cheryl Burke & MacKenzie, Scott B & Podsakoff, Philip M, 2003. "A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 30(2), pages 199-218, September.
    5. Wernerfelt, Birger, 1985. "Brand loyalty and user skills," Journal of Economic Behavior & Organization, Elsevier, vol. 6(4), pages 381-385, December.
    6. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    7. Hauser, John R & Wernerfelt, Birger, 1990. "An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 393-408, March.
    8. Scholderer, Joachim & Grunert, Klaus G. & Brunso, Karen, 2005. "A procedure for eliminating additive bias from cross-cultural survey data," Journal of Business Research, Elsevier, vol. 58(1), pages 72-78, January.
    9. Steenkamp, Jan-Benedict E M & Baumgartner, Hans, 1998. "Assessing Measurement Invariance in Cross-National Consumer Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(1), pages 78-90, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jong, M.G., 2006. "Response bias in international marketing research," Other publications TiSEM 5d4031be-97b5-4db3-962b-2, Tilburg University, School of Economics and Management.
    2. Janina Isabel Steinert & Lucie Dale Cluver & G. J. Melendez-Torres & Sebastian Vollmer, 2018. "One Size Fits All? The Validity of a Composite Poverty Index Across Urban and Rural Households in South Africa," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(1), pages 51-72, February.
    3. Ankica Kosic & Tamara Džamonja Ignjatović & Nebojša Petrović, 2021. "A Cross-Cultural Study of Distress during COVID-19 Pandemic: Some Protective and Risk Factors," IJERPH, MDPI, vol. 18(14), pages 1-15, July.
    4. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    5. Hofmans, J. & Pepermans, R. & Loix, E., 2009. "Measurement invariance matters: A case made for the ORTOFIN," Journal of Economic Psychology, Elsevier, vol. 30(4), pages 667-674, August.
    6. Dybro Liengaard, Benjamin, 2024. "Measurement invariance testing in partial least squares structural equation modeling," Journal of Business Research, Elsevier, vol. 177(C).
    7. Kroh, Julia & Globocnik, Dietfried & Schultz, Carsten & Holdhof, Frederike & Salomo, Søren, 2024. "Micro-foundations of digital innovation capability – A mixed method approach to develop and validate a multi-dimensional measurement instrument," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    8. Salzberger, Thomas & Newton, Fiona J. & Ewing, Michael T., 2014. "Detecting gender item bias and differential manifest response behavior: A Rasch-based solution," Journal of Business Research, Elsevier, vol. 67(4), pages 598-607.
    9. Eldad Davidov & Stefan Thörner & Peter Schmidt & Stefanie Gosen & Carina Wolf, 2011. "Level and change of group-focused enmity in Germany: unconditional and conditional latent growth curve models with four panel waves," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 481-500, December.
    10. P. Couper, Mick & Cernat, Alexandru & Beth Ofstedal, Mary, 2015. "Estimation of mode effects in the Health and Retirement Study using measurement models," ISER Working Paper Series 2015-19, Institute for Social and Economic Research.
    11. Eunju Jung & Yongjin Lee, 2020. "College Students’ Entrepreneurial Mindset: Educational Experiences Override Gender and Major," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    12. Carlos Miguel Lemos & Ross Joseph Gore & Ivan Puga-Gonzalez & F LeRon Shults, 2019. "Dimensionality and factorial invariance of religiosity among Christians and the religiously unaffiliated: A cross-cultural analysis based on the International Social Survey Programme," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-36, May.
    13. Eva Padrosa & Mireia Bolíbar & Mireia Julià & Joan Benach, 2021. "Comparing Precarious Employment Across Countries: Measurement Invariance of the Employment Precariousness Scale for Europe (EPRES-E)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(3), pages 893-915, April.
    14. Willem E. Saris & André Pirralha & Diana Zavala-Rojas, 2018. "Testing the Comparability of Different Types of Social Indicators Across Groups," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(3), pages 927-939, February.
    15. Francesca Chiesi & Andrea Bonacchi & Chloe Lau & Anna Enrica Tosti & Fabio Marra & Donald H Saklofske, 2020. "Measuring self-control across gender, age, language, and clinical status: A validation study of the Italian version of the Brief Self- Control Scale (BSCS)," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    16. Yoo, Boonghee & Donthu, Naveen, 2001. "Developing and validating a multidimensional consumer-based brand equity scale," Journal of Business Research, Elsevier, vol. 52(1), pages 1-14, April.
    17. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    18. Chao C. Chen & Joseph P. Gaspar & Ray Friedman & William Newburry & Michael C. Nippa & Katherine Xin & Ronaldo Parente, 2017. "Paradoxical Relationships Between Cultural Norms of Particularism and Attitudes Toward Relational Favoritism: A Cultural Reflectivity Perspective," Journal of Business Ethics, Springer, vol. 145(1), pages 63-79, September.
    19. Roth, Katharina P. & Diamantopoulos, Adamantios, 2009. "Advancing the country image construct," Journal of Business Research, Elsevier, vol. 62(7), pages 726-740, July.
    20. Dmitriy Poznyak & Bart Meuleman & Koen Abts & George Bishop, 2014. "Trust in American Government: Longitudinal Measurement Equivalence in the ANES, 1964–2008," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 741-758, September.

    More about this item

    Keywords

    C31; C51; C81; M31;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:61:y:2009:i:2:d:10.1007_bf03372818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.