IDEAS home Printed from https://ideas.repec.org/b/wfo/wstudy/67194.html
   My bibliography  Save this book

Pflege und Gesundheit

Author

Listed:
  • Ulrike Famira-Mühlberger

    (WIFO)

  • Christine Mayrhuber

    (WIFO)

  • Klaus Nowotny

Abstract

Auf Basis innovativer Modelle und detaillierter Gesundheitsdaten untersucht diese Studie – erstmals für Österreich – Zusammenhänge zwischen den bezogenen Gesundheitsleistungen von älteren Personen und dem Pflegegeldsystem. Der erstmalige Pflegegeldbezug lässt sich relativ gut prognostizieren. Dabei korrelieren das Alter, stationäre Aufenthalte in Krankenanstalten, Kontakte zu Allgemeinmedizinerinnen und -medizinern sowie Heilmittel, die das Nervensystem betreffen, am stärksten mit dem erstmaligen Pflegegeldbezug. Beim Übertritt in eine höhere Pflegegeldstufe zählen die bereits bestehende Pflegegeldstufe, das Alter sowie Heilmittel, die mit dem Nervensystem in Verbindung stehen, zu den Faktoren mit dem stärksten statistischen Zusammenhang. Die bestehende Pflegegeldstufe korreliert ebenfalls stark mit dem Eintritt in stationäre Pflege, ebenso die Häufigkeit von Kontakten zu Allgemeinmedizinerinnen und -medizinern sowie das Alter. Mit der Dauer der Krankenhausaufenthalte von Pflegegeldbeziehenden stehen die zuvor erfolgte Gesundheitsdiagnose der essenziellen (primären) Hypertonie sowie rezente Computertomographien von Kopf und Hals bzw. von Abdomen und Becken in einem statistischen Zusammenhang. Die Studie zieht gesundheitspolitische Schlussfolgerungen aus diesen Erkenntnissen.

Suggested Citation

  • Ulrike Famira-Mühlberger & Christine Mayrhuber & Klaus Nowotny, 2021. "Pflege und Gesundheit," WIFO Studies, WIFO, number 67194, April.
  • Handle: RePEc:wfo:wstudy:67194
    Note: With English abstract.
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/67194
    File Function: abstract
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Ulrike Famira-Mühlberger & Matthias Firgo & Gerhard Streicher, 2019. "Geriatrische Versorgung in Wien im Kontext des demographischen Wandels," WIFO Studies, WIFO, number 62221.
    3. Michael Klien & Hans Pitlik & Matthias Firgo & Ulrike Famira-Mühlberger, 2020. "Ein Modell für einen strukturierten vertikalen Finanzausgleich in Österreich," WIFO Studies, WIFO, number 65854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrike Famira-Mühlberger & Christine Mayrhuber & Klaus Nowotny, 2022. "Gesundheitsleistungen und Pflegegeldbezug," WIFO Monatsberichte (monthly reports), WIFO, vol. 95(3), pages 175-184, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrike Famira-Mühlberger & Christine Mayrhuber & Klaus Nowotny, 2022. "Gesundheitsleistungen und Pflegegeldbezug," WIFO Monatsberichte (monthly reports), WIFO, vol. 95(3), pages 175-184, March.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    4. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    7. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    8. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    9. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    10. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    11. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    14. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    15. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    16. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    18. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    19. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    20. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wstudy:67194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.