IDEAS home Printed from https://ideas.repec.org/b/spr/isorms/978-3-319-18842-3.html
   My bibliography  Save this book

Linear and Nonlinear Programming

Author

Listed:
  • David G. Luenberger

    (Stanford University)

  • Yinyu Ye

    (Stanford University)

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • David G. Luenberger & Yinyu Ye, 2016. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 4, number 978-3-319-18842-3, December.
  • Handle: RePEc:spr:isorms:978-3-319-18842-3
    DOI: 10.1007/978-3-319-18842-3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hedlund, Jonas, 2017. "Bayesian persuasion by a privately informed sender," Journal of Economic Theory, Elsevier, vol. 167(C), pages 229-268.
    2. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    3. Thibaut Résimont & Quentin Louveaux & Pierre Dewallef, 2021. "Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Nguyen Ngoc Luan & Do Sang Kim & Nguyen Dong Yen, 2022. "Two Optimal Value Functions in Parametric Conic Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 574-597, June.
    5. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    6. Na Xie & Zhidong Liu & Xiqun (Michael) Chen & Shen Li, 2022. "Fair Assignment for Reserved Nucleic Acid Testing," Sustainability, MDPI, vol. 14(18), pages 1-12, September.
    7. Janosch Rieger, 2021. "A Galerkin approach to optimization in the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d," Journal of Global Optimization, Springer, vol. 79(3), pages 593-615, March.
    8. Hasui, Kohei & Kobayashi, Teruyoshi & Sugo, Tomohiro, 2021. "Optimal irreversible monetary policy," European Economic Review, Elsevier, vol. 134(C).
    9. Arash Asadpour & MohammadHossein Bateni & Kshipra Bhawalkar & Vahab Mirrokni, 2019. "Concise Bid Optimization Strategies with Multiple Budget Constraints," Management Science, INFORMS, vol. 65(12), pages 5785-5812, December.
    10. Kohei Hasui & Teruyoshi Kobayashi & Tomohiro Sugo, 2019. "Irreversible monetary policy at the zero lower bound," Discussion Papers 1906, Graduate School of Economics, Kobe University.
    11. Shougui Zhang & Xiyong Cui & Guihua Xiong & Ruisheng Ran, 2024. "An Optimal ADMM for Unilateral Obstacle Problems," Mathematics, MDPI, vol. 12(12), pages 1-16, June.
    12. Qiang Fu & Tian‐Yi Zhou & Xin Guo, 2021. "Modified Poisson regression analysis of grouped and right‐censored counts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1347-1367, October.
    13. Michael N. Vrahatis & Panagiotis Kontogiorgos & George P. Papavassilopoulos, 2020. "Particle Swarm Optimization for Computing Nash and Stackelberg Equilibria in Energy Markets," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    14. Y. Bai & E. Hashorva & G. Ratovomirija & M. Tamraz, 2016. "Some Mathematical Aspects of Price Optimisation," Papers 1605.05814, arXiv.org.
    15. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    16. Dascher, Kristof, 2020. "City Shapes' Contribution to Why Donald Trump Won," MPRA Paper 99290, University Library of Munich, Germany.
    17. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 0. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    18. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    19. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    20. Jason Xu & Eric C. Chi & Meng Yang & Kenneth Lange, 2018. "A majorization–minimization algorithm for split feasibility problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 795-828, December.
    21. Nitish Das & P. Aruna Priya, 2019. "A Gradient-Based Interior-Point Method to Solve the Many-to-Many Assignment Problems," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    22. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 2022. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2246-2268, November.
    23. Ibrahem, Ibrahem M.A. & Akhrif, Ouassima & Moustapha, Hany & Staniszewski, Martin, 2021. "Nonlinear generalized predictive controller based on ensemble of NARX models for industrial gas turbine engine," Energy, Elsevier, vol. 230(C).
    24. Neculai Andrei, 2020. "Diagonal Approximation of the Hessian by Finite Differences for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 859-879, June.
    25. Li-Gang Lin & Yew-Wen Liang & Wen-Yuan Hsieh, 2020. "Convex Quadratic Equation," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 1006-1028, September.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isorms:978-3-319-18842-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.