IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i3d10.1007_s10957-020-01727-5.html
   My bibliography  Save this article

Convex Quadratic Equation

Author

Listed:
  • Li-Gang Lin

    (National Central University)

  • Yew-Wen Liang

    (National Chiao Tung University)

  • Wen-Yuan Hsieh

    (Sonix Technology Co., Ltd)

Abstract

Two main results (A) and (B) are presented in algebraic closed forms. (A) Regarding the convex quadratic equation, an analytical equivalent solvability condition and parameterization of all solutions are formulated, for the first time in the literature and in a unified framework. The philosophy is based on the matrix algebra, while facilitated by a novel equivalence/coordinate transformation (with respect to the much more challenging case of rank-deficient Hessian matrix). In addition, the parameter-solution bijection is verified. From the perspective via (A), a major application is re-examined that accounts for the other main result (B), which deals with both the infinite and finite-time horizon nonlinear optimal control. By virtue of (A), the underlying convex quadratic equations associated with the Hamilton–Jacobi equation, Hamilton–Jacobi inequality, and Hamilton–Jacobi–Bellman equation are explicitly solved, respectively. Therefore, the long quest for the constituent of the optimal controller, gradient of the associated value function, can be captured in each solution set. Moving forward, a preliminary to exactly locate the optimality using the state-dependent (resp., differential) Riccati equation scheme is prepared for the remaining symmetry condition.

Suggested Citation

  • Li-Gang Lin & Yew-Wen Liang & Wen-Yuan Hsieh, 2020. "Convex Quadratic Equation," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 1006-1028, September.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01727-5
    DOI: 10.1007/s10957-020-01727-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01727-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01727-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abolvafaei, Mahnaz & Ganjefar, Soheil, 2020. "Maximum power extraction from wind energy system using homotopy singular perturbation and fast terminal sliding mode method," Renewable Energy, Elsevier, vol. 148(C), pages 611-626.
    2. David G. Luenberger & Yinyu Ye, 2016. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 4, number 978-3-319-18842-3, April.
    3. S. C. Beeler & H. T. Tran & H. T. Banks, 2000. "Feedback Control Methodologies for Nonlinear Systems," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 1-33, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasanna Parvathy & Jeevamma Jacob, 2021. "Inverse Optimal Control Via Diagonal Stabilization Applied to Attitude Tracking of a Reusable Launch Vehicle," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 794-822, December.
    2. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    3. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    4. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    5. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    6. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 0. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    7. Cesar O. Aguilar & Arthur J. Krener, 2014. "Numerical Solutions to the Bellman Equation of Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 527-552, February.
    8. Kohei Hasui & Teruyoshi Kobayashi & Tomohiro Sugo, 2019. "Irreversible monetary policy at the zero lower bound," Discussion Papers 1906, Graduate School of Economics, Kobe University.
    9. Hedlund, Jonas, 2017. "Bayesian persuasion by a privately informed sender," Journal of Economic Theory, Elsevier, vol. 167(C), pages 229-268.
    10. Janosch Rieger, 2021. "A Galerkin approach to optimization in the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d," Journal of Global Optimization, Springer, vol. 79(3), pages 593-615, March.
    11. Vito Polito, 2020. "Nonlinear Business Cycle and Optimal Policy: A VSTAR Perspective," CESifo Working Paper Series 8060, CESifo.
    12. Hasui, Kohei & Kobayashi, Teruyoshi & Sugo, Tomohiro, 2021. "Optimal irreversible monetary policy," European Economic Review, Elsevier, vol. 134(C).
    13. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 2022. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2246-2268, November.
    14. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    15. Neculai Andrei, 2020. "Diagonal Approximation of the Hessian by Finite Differences for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 859-879, June.
    16. Ibrahem, Ibrahem M.A. & Akhrif, Ouassima & Moustapha, Hany & Staniszewski, Martin, 2021. "Nonlinear generalized predictive controller based on ensemble of NARX models for industrial gas turbine engine," Energy, Elsevier, vol. 230(C).
    17. Michael N. Vrahatis & Panagiotis Kontogiorgos & George P. Papavassilopoulos, 2020. "Particle Swarm Optimization for Computing Nash and Stackelberg Equilibria in Energy Markets," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    18. Jason Xu & Eric C. Chi & Meng Yang & Kenneth Lange, 2018. "A majorization–minimization algorithm for split feasibility problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 795-828, December.
    19. Dascher, Kristof, 2020. "City Shapes' Contribution to Why Donald Trump Won," MPRA Paper 99290, University Library of Munich, Germany.
    20. Y. Bai & E. Hashorva & G. Ratovomirija & M. Tamraz, 2016. "Some Mathematical Aspects of Price Optimisation," Papers 1605.05814, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01727-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.