IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i3d10.1007_s10898-020-00941-9.html
   My bibliography  Save this article

A Galerkin approach to optimization in the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d

Author

Listed:
  • Janosch Rieger

    (Monash University)

Abstract

The aim of this paper is to open up a new perspective on set and shape optimization by establishing a theory of Galerkin approximations to the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d with favorable properties, both from a theoretical and from a computational perspective. Galerkin spaces consisting of polytopes with fixed facet normals are first explored in depth and then used to solve optimization problems in the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d approximately.

Suggested Citation

  • Janosch Rieger, 2021. "A Galerkin approach to optimization in the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d," Journal of Global Optimization, Springer, vol. 79(3), pages 593-615, March.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00941-9
    DOI: 10.1007/s10898-020-00941-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00941-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00941-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David G. Luenberger & Yinyu Ye, 2016. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 4, number 978-3-319-18842-3, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Ernst & Lars Grüne & Janosch Rieger, 2023. "A linear programming approach to approximating the infinite time reachable set of strictly stable linear control systems," Journal of Global Optimization, Springer, vol. 86(2), pages 521-543, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    2. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    3. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    4. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 0. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    5. Kohei Hasui & Teruyoshi Kobayashi & Tomohiro Sugo, 2019. "Irreversible monetary policy at the zero lower bound," Discussion Papers 1906, Graduate School of Economics, Kobe University.
    6. Hedlund, Jonas, 2017. "Bayesian persuasion by a privately informed sender," Journal of Economic Theory, Elsevier, vol. 167(C), pages 229-268.
    7. Hasui, Kohei & Kobayashi, Teruyoshi & Sugo, Tomohiro, 2021. "Optimal irreversible monetary policy," European Economic Review, Elsevier, vol. 134(C).
    8. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 2022. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2246-2268, November.
    9. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    10. Neculai Andrei, 2020. "Diagonal Approximation of the Hessian by Finite Differences for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 859-879, June.
    11. Ibrahem, Ibrahem M.A. & Akhrif, Ouassima & Moustapha, Hany & Staniszewski, Martin, 2021. "Nonlinear generalized predictive controller based on ensemble of NARX models for industrial gas turbine engine," Energy, Elsevier, vol. 230(C).
    12. Michael N. Vrahatis & Panagiotis Kontogiorgos & George P. Papavassilopoulos, 2020. "Particle Swarm Optimization for Computing Nash and Stackelberg Equilibria in Energy Markets," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    13. Jason Xu & Eric C. Chi & Meng Yang & Kenneth Lange, 2018. "A majorization–minimization algorithm for split feasibility problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 795-828, December.
    14. Dascher, Kristof, 2020. "City Shapes' Contribution to Why Donald Trump Won," MPRA Paper 99290, University Library of Munich, Germany.
    15. Y. Bai & E. Hashorva & G. Ratovomirija & M. Tamraz, 2016. "Some Mathematical Aspects of Price Optimisation," Papers 1605.05814, arXiv.org.
    16. Nguyen Ngoc Luan & Do Sang Kim & Nguyen Dong Yen, 2022. "Two Optimal Value Functions in Parametric Conic Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 574-597, June.
    17. Na Xie & Zhidong Liu & Xiqun (Michael) Chen & Shen Li, 2022. "Fair Assignment for Reserved Nucleic Acid Testing," Sustainability, MDPI, vol. 14(18), pages 1-12, September.
    18. Qiang Fu & Tian‐Yi Zhou & Xin Guo, 2021. "Modified Poisson regression analysis of grouped and right‐censored counts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1347-1367, October.
    19. Li-Gang Lin & Yew-Wen Liang & Wen-Yuan Hsieh, 2020. "Convex Quadratic Equation," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 1006-1028, September.
    20. Thibaut Résimont & Quentin Louveaux & Pierre Dewallef, 2021. "Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System," Energies, MDPI, vol. 14(17), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00941-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.