IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-18842-3_6.html
   My bibliography  Save this book chapter

Conic Linear Programming

In: Linear and Nonlinear Programming

Author

Listed:
  • David G. Luenberger

    (Stanford University)

  • Yinyu Ye

    (Stanford University)

Abstract

Conic Linear Programming, hereafter CLP, is a natural extension of Linear programming (LP). In LP, the variables form a vector which is required to be componentwise nonnegative, while in CLP they are points in a pointed convex cone (see Appendix B.1) of an Euclidean space, such as vectors as well as matrices of finite dimensions. For example, Semidefinite programming (SDP) is a kind of CLP, where the variable points are symmetric matrices constrained to be positive semidefinite. Both types of problems may have linear equality constraints as well. Although CLPs have long been known to be convex optimization problems, no efficient solution algorithm was known until about two decades ago, when it was discovered that interior-point algorithms for LP discussed in Chap. 5, can be adapted to solve certain CLPs with both theoretical and practical efficiency. During the same period, it was discovered that CLP, especially SDP, is representative of a wide assortment of applications, including combinatorial optimization, statistical computation, robust optimization, Euclidean distance geometry, quantum computing, optimal control, etc. CLP is now widely recognized as a powerful mathematical computation model of general importance.

Suggested Citation

  • David G. Luenberger & Yinyu Ye, 2016. "Conic Linear Programming," International Series in Operations Research & Management Science, in: Linear and Nonlinear Programming, edition 4, chapter 0, pages 149-176, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-18842-3_6
    DOI: 10.1007/978-3-319-18842-3_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-18842-3_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.