IDEAS home Printed from https://ideas.repec.org/a/zib/zbtaec/v2y2021i1p12-25.html
   My bibliography  Save this article

Comparative Study Of Evaluation Of Soil Fertility Status In Rice Zone, Morang

Author

Listed:
  • Pankaj Kumar Yadav

    (Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

  • Anuj Kumar Mandal

    (IFaculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

  • Krishna Hari Dhakal

    (Department of Genetics and Plant Breeding, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

Abstract

A study was conducted in the rice zone of Morang district to examine soil fertility status and the most limiting nutrient in the research area in accordance with rice cultivation requirements. Hundred samples were collected from two different locations of Ratuwamai Municipality ward number 6 and 8 at depth of 0-15 cm from surface soil. Samples were analyzed to find texture, pH, Nitrogen, Phosphorus, Potassium and Soil Organic Matter (SOM). Statistical tools were used to analyze the data. The most limiting nutrient in rice fields were determined by comparing the observed value with the standard requirement for rice fields. From analysis, it was revealed that, nitrogen content was found medium. Phosphorus was low in ward 6 whereas medium in ward 8. Potassium was high in ward 8 whereas medium in ward 6. SOM was low due to less application of organic fertilizer. Majority sample were of acidic probably due to more use of urea. Thirty percent samples of ward 8 were neutral and with equal alkalinity in both wards. Majority of sample was sandy loam except in ward 8 where ten percent sample was clayey loam. Both wards show equal behavior of loamy soil. Nutshell, majority of samples were of low fertility. Nitrogen and Potassium was most limiting as per the rice cultivation requirement with optimum soil pH. Various extension works regarding the importance of soil fertility management, sustainable soil management, optimum application of organic and inorganic fertilizers and the techniques to enhance the soil fertility status is required.

Suggested Citation

  • Pankaj Kumar Yadav & Anuj Kumar Mandal & Krishna Hari Dhakal, 2021. "Comparative Study Of Evaluation Of Soil Fertility Status In Rice Zone, Morang," Tropical Agroecosystems (TAEC), Zibeline International Publishing, vol. 2(1), pages 12-25, April.
  • Handle: RePEc:zib:zbtaec:v:2:y:2021:i:1:p:12-25
    DOI: 10.26480/taec.01.2021.12.25
    as

    Download full text from publisher

    File URL: https://taec.com.my/download/1727/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/taec.01.2021.12.25?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    2. Bahareh Delsouz Khaki & Naser Honarjoo & Naser Davatgar & Ahmad Jalalian & Hosein Torabi Golsefidi, 2017. "Assessment of Two Soil Fertility Indexes to Evaluate Paddy Fields for Rice Cultivation," Sustainability, MDPI, vol. 9(8), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    2. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    3. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    4. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    5. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    6. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    7. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    8. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    11. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    12. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    13. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    14. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    15. Ashley E. Larsen & Steven D. Gaines & Olivier Deschênes, 2017. "Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    16. Carpentier, A. & Reboud, X., 2018. "Why farmers consider pesticides the ultimate in crop protection: economic and behavioral insights," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277528, International Association of Agricultural Economists.
    17. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    18. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    19. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    20. Hristov, Jordan & Clough, Yann & Sahlin, Ullrika & Smith, Henrik G. & Stjernman, Martin & Olsson, Ola & Sahrbacher, Amanda & Brady, Mark V., 2020. "Impacts of the EU's Common Agricultural Policy “Greening” reform on agricultural development, biodiversity, and ecosystem services," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(4), pages 716-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbtaec:v:2:y:2021:i:1:p:12-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://taec.com.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.