IDEAS home Printed from https://ideas.repec.org/a/zib/zbnamm/v2y2019i1p1-5.html
   My bibliography  Save this article

Topology Optimization Of Integrated Combustion Engine Piston Using F ea Method (Cae Tools)

Author

Listed:
  • S. Sathishkumar

    (Vel Tech-Avadi, Chennai-600062, Tamil Nadu, India)

  • Dr. M. Kannan

    (MAM College of Engineering, Trichy- 621105, Tamil Nadu, India)

Abstract

Topology optimization is a numerical approach that optimizes material arrangement within a given design space, for a given set of loads and periphery conditions such that the resulting layout meets a approved set of concert targets. Using topology optimization, engineers can find the best perception design that meets the design necessities. Topology optimization has been developed through the use of finite element methods of the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets, and derivatives. Topology optimization is used at the idea level of the design process to appear at an intangible design plan that is then fine-tuned for concert and manufacturability. This thesis work correlated to the lay out optimization of internal combustion engine piston. Piston is one of the significant apparatus of engine. The multiple type of piston using through the automobile sectors. The various different type of piston is i) Equivalents lands thickness piston ii) Without crown piston (flat piston), iii) Without undercut piston, iv) With skirt land piston v) Dissimilar land thickness the analyzed this research work the Computer Aided Designing model initially created by CATIA, then Finite Element Analysis done by ANSYS.

Suggested Citation

  • S. Sathishkumar & Dr. M. Kannan, 2019. "Topology Optimization Of Integrated Combustion Engine Piston Using F ea Method (Cae Tools)," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 2(1), pages 1-5, January.
  • Handle: RePEc:zib:zbnamm:v:2:y:2019:i:1:p:1-5
    DOI: 10.26480/amm.01.2019.01.05
    as

    Download full text from publisher

    File URL: https://actamechanicamalaysia.com/download/657/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/amm.01.2019.01.05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    2. Harshavardhan, Ballapu & Mallikarjuna, J.M., 2015. "Effect of piston shape on in-cylinder flows and air–fuel interaction in a direct injection spark ignition engine – A CFD analysis," Energy, Elsevier, vol. 81(C), pages 361-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Vang Le & Lan Huong Nguyen, 2019. "Design And Fabrication Of Distillation Equipment Of Fresh Water From The Seawater By The Use Of The Waste Heat From Diesel Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 79-83, March.
    2. Agarwal A. & Seretse O.M. & Letsatsi M.T. & Maele L.T. & Koketso D., 2019. "Performance Evolution Of An Improved Solar Thermal Hot Air Heating System For Drying Ground-Nut," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 01-05, March.
    3. Dairabay Zh. Abdeli & Bae Wisap & Bakytzhan R. Taubayev, 2019. "Effective Technologies Of Dissolution Of Organic Deposits In The Bottomhole Zone Of Oil Wells Registration Form," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 15-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    2. Desantes, J.M. & García-Oliver, J.M. & Vera-Tudela, W. & López-Pintor, D. & Schneider, B. & Boulouchos, K., 2016. "Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy," Applied Energy, Elsevier, vol. 179(C), pages 389-400.
    3. An, Yanzhao & Raman, Vallinayagam & Tang, Qinglong & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions," Applied Energy, Elsevier, vol. 235(C), pages 56-67.
    4. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    5. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    6. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    7. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    8. Rafaa Saaidia & Mohamed Ali Jemni & Mohamed Salah Abid, 2017. "Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend," Energies, MDPI, vol. 11(1), pages 1-22, December.
    9. Desantes, José M. & Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier, 2014. "The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency," Energy, Elsevier, vol. 78(C), pages 854-868.
    10. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    11. Deqing Mei & Qisong Yu & Zhengjun Zhang & Shan Yue & Lizhi Tu, 2021. "Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine," Energies, MDPI, vol. 14(6), pages 1-14, March.
    12. Fang, Cheng & Yang, Fuyuan & Ouyang, Minggao & Gao, Guojing & Chen, Lin, 2013. "Combustion mode switching control in a HCCI diesel engine," Applied Energy, Elsevier, vol. 110(C), pages 190-200.
    13. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    14. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    15. Neshat, Elaheh & Saray, Rahim Khoshbakhti & Hosseini, Vahid, 2016. "Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism," Applied Energy, Elsevier, vol. 179(C), pages 463-478.
    16. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine," Applied Energy, Elsevier, vol. 190(C), pages 658-669.
    17. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    18. Kendyl Ryan Partridge & Deivanayagam Hariharan & Abhinandhan Narayanan & Austin Leo Pearson & Kalyan Kumar Srinivasan & Sundar Rajan Krishnan, 2024. "A Comparative Experimental Analysis of Natural Gas Dual Fuel Combustion Ignited by Diesel and Poly OxyMethylene Dimethyl Ether," Energies, MDPI, vol. 17(8), pages 1-24, April.
    19. Allocca, L. & Lazzaro, M. & Meccariello, G. & Montanaro, A., 2016. "Schlieren visualization of a GDI spray impacting on a heated wall: Non-vaporizing and vaporizing evolutions," Energy, Elsevier, vol. 108(C), pages 93-98.
    20. Belgiorno, Giacomo & Dimitrakopoulos, Nikolaos & Di Blasio, Gabriele & Beatrice, Carlo & Tunestål, Per & Tunér, Martin, 2018. "Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine," Applied Energy, Elsevier, vol. 228(C), pages 2221-2234.

    More about this item

    Keywords

    Piston; topology optimization; CATIA V5 R20; ANSYS;
    All these keywords.

    JEL classification:

    • R20 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnamm:v:2:y:2019:i:1:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://actamechanicamalaysia.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.