IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1651-d517934.html
   My bibliography  Save this article

Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine

Author

Listed:
  • Deqing Mei

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qisong Yu

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zhengjun Zhang

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shan Yue

    (School of Business, Jinken College of Technology, Nanjing 210000, China)

  • Lizhi Tu

    (Shanghai FEV Powertrain Technology Company, Shanghai 200336, China)

Abstract

The effects of two pilot injections on combustion and emissions were evaluated in a single−cylinder turbocharged diesel engine, which operated in premixed charge compression ignition (PCCI) modes with multiple injections and heavy exhaust gas recirculation under the low load by experiments and simulation. It was revealed that with the delay of the start of the first pilot injection ( SOI−P1 ) or the advance of the start of second pilot injection ( SOI−P2 ), respectively, the pressure, heat release rate ( HRR ), and temperature peak were all increased. Analysis of the combustion process indicates that, during the two pilot injection periods, the ignition timing was mainly determined by the SOI−P2 while the first released heat peak was influenced by SOI−P1 . With the delay of SOI−P1 or the advance of SOI−P2 , nitrogen oxide (NOx) generation increased significantly while soot generation varied a little. In addition, increasing Q 1 and decreasing the second pilot injection quantity ( Q 2) can manipulate the NOx and soot at a low level. The advance in SOI−P2 of 5 °CA couple with increasing Q 1 and reducing Q 2 was proposed, which can mitigate the compromise between emissions and thermal efficiency under the low load in the present PCCI mode.

Suggested Citation

  • Deqing Mei & Qisong Yu & Zhengjun Zhang & Shan Yue & Lizhi Tu, 2021. "Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine," Energies, MDPI, vol. 14(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1651-:d:517934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjun Park & Kyo Seung Lee & Jungsoo Park, 2018. "Parametric Study on EGR Cooler Fouling Mechanism Using Model Gas and Light-Duty Diesel Engine Exhaust Gas," Energies, MDPI, vol. 11(11), pages 1-10, November.
    2. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    3. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    4. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    5. Mueller, Charles J. & Nilsen, Christopher W. & Ruth, Daniel J. & Gehmlich, Ryan K. & Pickett, Lyle M. & Skeen, Scott A., 2017. "Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines," Applied Energy, Elsevier, vol. 204(C), pages 206-220.
    6. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita Zuev & Andrey Kozlov & Alexey Terenchenko & Kirill Karpukhin & Ulugbek Azimov, 2021. "Detailed Injection Strategy Analysis of a Heavy-Duty Diesel Engine Running on Rape Methyl Ester," Energies, MDPI, vol. 14(13), pages 1-25, June.
    2. José Javier López & Oscar A. de la Garza & Joaquín De la Morena & Simón Martínez-Martínez, 2021. "Influence of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process through Measuring Soot Emissions," Energies, MDPI, vol. 14(19), pages 1-11, October.
    3. Simón Martínez-Martínez & Oscar A. de la Garza & Miguel García-Yera & Ricardo Martínez-Carrillo & Fausto A. Sánchez-Cruz, 2021. "Hydraulic Interactions between Injection Events Using Multiple Injection Strategies and a Solenoid Diesel Injector," Energies, MDPI, vol. 14(11), pages 1-11, May.
    4. Tyler Simpson & Christopher Depcik, 2022. "Multiple Fuel Injection Strategies for Compression Ignition Engines," Energies, MDPI, vol. 15(14), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    4. Alessandro Falai & Daniela Anna Misul, 2023. "Data-Driven Model for Real-Time Estimation of NOx in a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 16(5), pages 1-17, February.
    5. Wu, Shaohua & Lao, Chung Ting & Akroyd, Jethro & Mosbach, Sebastian & Yang, Wenming & Kraft, Markus, 2020. "A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines," Applied Energy, Elsevier, vol. 258(C).
    6. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    8. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    9. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    10. Desantes, J.M. & García-Oliver, J.M. & Vera-Tudela, W. & López-Pintor, D. & Schneider, B. & Boulouchos, K., 2016. "Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy," Applied Energy, Elsevier, vol. 179(C), pages 389-400.
    11. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    12. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    13. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    14. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    15. An, Yanzhao & Raman, Vallinayagam & Tang, Qinglong & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions," Applied Energy, Elsevier, vol. 235(C), pages 56-67.
    16. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    17. Cuaical Arciniegas, Víctor & Domínguez Cardozo, Sara & Arias, Silvana & Valencia López, Ana María & Botero, María Luisa & Bustamante Londoño, Felipe, 2024. "Engine & vehicle modeling for fuel assessment under local driving conditions," Energy, Elsevier, vol. 304(C).
    18. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    19. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    20. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1651-:d:517934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.