IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v67y2016icp158-172.html
   My bibliography  Save this article

Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model

Author

Listed:
  • Sun, Jingyun
  • Li, Zhongfei
  • Zeng, Yan

Abstract

In this paper, we study an optimal investment problem under the mean–variance criterion for defined contribution pension plans during the accumulation phase. To protect the rights of a plan member who dies before retirement, a clause on the return of premiums for the plan member is adopted. We assume that the manager of the pension plan is allowed to invest the premiums in a financial market, which consists of one risk-free asset and one risky asset whose price process is modeled by a jump–diffusion process. The precommitment strategy and the corresponding value function are obtained using the stochastic dynamic programming approach. Under the framework of game theory and the assumption that the manager’s risk aversion coefficient depends on the current wealth, the equilibrium strategy and the corresponding equilibrium value function are also derived. Our results show that with the same level of variance in the terminal wealth, the expected optimal terminal wealth under the precommitment strategy is greater than that under the equilibrium strategy with a constant risk aversion coefficient; the equilibrium strategy with a constant risk aversion coefficient is revealed to be different from that with a state-dependent risk aversion coefficient; and our results can also be degenerated to the results of He and Liang (2013b) and Björk et al. (2014). Finally, some numerical simulations are provided to illustrate our derived results.

Suggested Citation

  • Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
  • Handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:158-172
    DOI: 10.1016/j.insmatheco.2016.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716300506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    2. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    3. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    4. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    5. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    6. Wu, Huiling & Zeng, Yan, 2015. "Equilibrium investment strategy for defined-contribution pension schemes with generalized mean–variance criterion and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 396-408.
    7. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    8. Wu, Huiling & Zhang, Ling & Chen, Hua, 2015. "Nash equilibrium strategies for a defined contribution pension management," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 202-214.
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    11. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    12. He, Lin & Liang, Zongxia, 2013. "Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 404-410.
    13. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    14. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    15. Chen, Shumin & Li, Zhongfei & Zeng, Yan, 2014. "Optimal dividend strategies with time-inconsistent preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 150-172.
    16. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    17. Francesco Menoncin & Elena Vigna, 2013. "Mean-variance target-based optimisation in DC plan with stochastic interest rate," Carlo Alberto Notebooks 337, Collegio Carlo Alberto.
    18. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    19. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    20. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    21. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    22. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
    23. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    24. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    25. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calisto Guambe & Rodwell Kufakunesu & Gusti Van Zyl & Conrad Beyers, 2018. "Optimal asset allocation for a DC plan with partial information under inflation and mortality risks," Papers 1808.06337, arXiv.org, revised Aug 2018.
    2. Wang, Pei & Shen, Yang & Zhang, Ling & Kang, Yuxin, 2021. "Equilibrium investment strategy for a DC pension plan with learning about stock return predictability," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 384-407.
    3. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    4. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    5. Li, Danping & Rong, Ximin & Zhao, Hui & Yi, Bo, 2017. "Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 6-20.
    6. Xiaoyi Zhang, 2022. "Optimal DC Pension Management Under Inflation Risk With Jump Diffusion Price Index and Cost of Living Process," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1253-1270, June.
    7. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    8. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    9. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    10. Wujun Lv & Linlin Tian & Xiaoyi Zhang, 2023. "Optimal Defined Contribution Pension Management with Jump Diffusions and Common Shock Dependence," Mathematics, MDPI, vol. 11(13), pages 1-20, July.
    11. Esben Kryger & Maj-Britt Nordfang & Mogens Steffensen, 2020. "Optimal control of an objective functional with non-linearity between the conditional expectations: solutions to a class of time-inconsistent portfolio problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 405-438, June.
    12. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    13. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    14. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    15. Guohui Guan, 2020. "Equilibrium and Precommitment Mean-Variance Portfolio Selection Problem with Partially Observed Price Index and Multiple Assets," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 25-47, March.
    16. Xiaoyi Zhang & Junyi Guo, 2018. "The Role of Inflation-Indexed Bond in Optimal Management of Defined Contribution Pension Plan During the Decumulation Phase," Risks, MDPI, vol. 6(2), pages 1-16, March.
    17. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    18. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    2. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    3. Menoncin, Francesco & Vigna, Elena, 2017. "Mean–variance target-based optimisation for defined contribution pension schemes in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 172-184.
    4. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    5. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    6. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    7. Wu, Huiling & Zhang, Ling & Chen, Hua, 2015. "Nash equilibrium strategies for a defined contribution pension management," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 202-214.
    8. Yao, Haixiang & Chen, Ping & Li, Xun, 2016. "Multi-period defined contribution pension funds investment management with regime-switching and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 103-113.
    9. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    10. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    11. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    12. Francesco Menoncin & Elena Vigna, 2013. "Mean-variance target-based optimisation in DC plan with stochastic interest rate," Carlo Alberto Notebooks 337, Collegio Carlo Alberto.
    13. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    14. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    15. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    16. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    17. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    18. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    19. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    20. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:158-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.