IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v78y2018icp87-104.html
   My bibliography  Save this article

Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee

Author

Listed:
  • Tang, Mei-Ling
  • Chen, Son-Nan
  • Lai, Gene C.
  • Wu, Ting-Pin

Abstract

This paper aims to propose referable asset allocation criteria for a defined-contribution (DC) pension plan under stochastic interest rates and the minimum guarantee of inflation protection on annuities. Motivated by the work of Litterman and Scheinkman (1991), which verifies that interest rate risks could be properly modeled with multiple factors, our proposed model extends the Jarrow and Yildirim (JY, 2003) model to a multi-factor framework, and simultaneously incorporates a stock asset to develop what is called the extended JY model in this study. The extended JY model can specify an economic environment with the consideration of risks arising from nominal and real interest rates, the CPI index (inflation rates), and the value of a stock portfolio, which facilitates to complete the closed-form solutions for the stochastic dynamic programming problem of a DC pension plan. The subsequent numerical experiment examines the allocative behaviors in an inflationary economy. In addition, the term effects among interest rates show to have a substantial impact on allocative decisions, and thus can be properly exploited to improve the final wealth of the pension fund.

Suggested Citation

  • Tang, Mei-Ling & Chen, Son-Nan & Lai, Gene C. & Wu, Ting-Pin, 2018. "Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 87-104.
  • Handle: RePEc:eee:insuma:v:78:y:2018:i:c:p:87-104
    DOI: 10.1016/j.insmatheco.2017.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871730505X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2004. "Optimal design of the guarantee for defined contribution funds," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2239-2260, October.
    2. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Menoncin, Francesco, 2002. "Optimal portfolio and background risk: an exact and an approximated solution," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 249-265, October.
    5. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    6. Munk, Claus & Sørensen, Carsten, 2010. "Dynamic asset allocation with stochastic income and interest rates," Journal of Financial Economics, Elsevier, vol. 96(3), pages 433-462, June.
    7. Michael J. Fleming & Neel Krishnan, 2012. "The microstructure of the TIPS market," Economic Policy Review, Federal Reserve Bank of New York, vol. 18(Mar), pages 27-45.
    8. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    9. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    10. Isabelle Bajeux-Besnainou & James V. Jordan & Roland Portait, 2003. "Dynamic Asset Allocation for Stocks, Bonds, and Cash," The Journal of Business, University of Chicago Press, vol. 76(2), pages 263-288, April.
    11. LuisM. Viceira & John Y. Campbell, 2001. "Who Should Buy Long-Term Bonds?," American Economic Review, American Economic Association, vol. 91(1), pages 99-127, March.
    12. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    13. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    14. Ma, Qing-Ping, 2011. "On "optimal pension management in a stochastic framework" with exponential utility," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 61-69, July.
    15. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    16. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    17. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2000. "Optimal investment strategies in a CIR framework," ULB Institutional Repository 2013/7594, ULB -- Universite Libre de Bruxelles.
    18. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    19. Tiong, Serena, 2013. "Pricing inflation-linked variable annuities under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 77-86.
    20. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    21. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    22. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    23. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    24. Kaushik I. Amin & Robert A. Jarrow, 2008. "Pricing foreign currency options under stochastic interest rates," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 14, pages 307-326, World Scientific Publishing Co. Pte. Ltd..
    25. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    26. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    27. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    28. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2004. "Optimal design of the guarantee for defined contribution funds," ULB Institutional Repository 2013/7602, ULB -- Universite Libre de Bruxelles.
    29. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spyros Papathanasiou & Dimitris Kenourgios & Drosos Koutsokostas & Georgios Pergeris, 2023. "Can treasury inflation-protected securities safeguard investors from outward risk spillovers? A portfolio hedging strategy through the prism of COVID-19," Journal of Asset Management, Palgrave Macmillan, vol. 24(3), pages 198-211, May.
    2. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    3. Xiao Xu, 2020. "The optimal investment strategy of a DC pension plan under deposit loan spread and the O-U process," Papers 2005.10661, arXiv.org.
    4. Xiaoyi Zhang, 2022. "Optimal DC Pension Management Under Inflation Risk With Jump Diffusion Price Index and Cost of Living Process," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1253-1270, June.
    5. Xiaoyi Zhang & Junyi Guo, 2018. "The Role of Inflation-Indexed Bond in Optimal Management of Defined Contribution Pension Plan During the Decumulation Phase," Risks, MDPI, vol. 6(2), pages 1-16, March.
    6. Pengyu Wei & Charles Yang, 2023. "Optimal investment for defined-contribution pension plans under money illusion," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 729-753, August.
    7. Ankush Agarwal & Christian-Oliver Ewald & Yongjie Wang, 2023. "Hedging longevity risk in defined contribution pension schemes," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    8. Wujun Lv & Linlin Tian & Xiaoyi Zhang, 2023. "Optimal Defined Contribution Pension Management with Jump Diffusions and Common Shock Dependence," Mathematics, MDPI, vol. 11(13), pages 1-20, July.
    9. Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.
    2. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    3. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    4. Pengyu Wei & Charles Yang, 2023. "Optimal investment for defined-contribution pension plans under money illusion," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 729-753, August.
    5. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    8. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    9. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.
    10. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    11. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    12. repec:uts:finphd:40 is not listed on IDEAS
    13. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    14. repec:dau:papers:123456789/5374 is not listed on IDEAS
    15. Jean-Paul Décamps, 1993. "Valorisation de produits obligataires dans un modéle d'équilibre général en temps discret," Annals of Economics and Statistics, GENES, issue 31, pages 73-100.
    16. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    17. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    18. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    19. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    20. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    21. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    22. Chang, Hao, 2015. "Dynamic mean–variance portfolio selection with liability and stochastic interest rate," Economic Modelling, Elsevier, vol. 51(C), pages 172-182.

    More about this item

    Keywords

    Asset allocation; Defined contribution pension plan; Stochastic interest rate; Inflation-indexed bond; Minimum guarantee;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:78:y:2018:i:c:p:87-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.