IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2468-d863741.html
   My bibliography  Save this article

Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment

Author

Listed:
  • Mei-Ling Tang

    (Department of Financial Engineering and Actuarial Mathematics, Soochow University, Taipei 100006, Taiwan)

  • Ting-Pin Wu

    (Department of Finance, National Central University, Taoyuan 320317, Taiwan)

  • Ming-Chin Hung

    (Department of Financial Engineering and Actuarial Mathematics, Soochow University, Taipei 100006, Taiwan)

Abstract

To ensure the success of a pension plan under a self-contained defined contribution (DC) retirement plan, the inclusion of foreign assets in a local pension portfolio could be beneficial for risk diversification and the efficient improvement of a fund’s investment performance during its accumulation phase. This study focuses on developing international asset allocation criteria for a DC pension plan; accordingly, we consider risk exposure relative to stochastic interest rates and ex- change rates with minimum guarantees. An arbitrage-free framework, namely, the cross-currency Heath–Jarrow–Morton interest rate model, is introduced in dynamic optimization programming for the DC pension fund. The proposed solution based on the generalized stochastic framework provides tractable and appropriate criteria for the dynamic allocation of a DC pension fund. The constituents of the optimal solution can reflect changes in investment lifecycles and shifts in risk preferences during the accumulation phase of a DC pension plan.

Suggested Citation

  • Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2468-:d:863741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karen K. Lewis, 1999. "Trying to Explain Home Bias in Equities and Consumption," Journal of Economic Literature, American Economic Association, vol. 37(2), pages 571-608, June.
    2. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2004. "Optimal design of the guarantee for defined contribution funds," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2239-2260, October.
    3. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Menoncin, Francesco, 2002. "Optimal portfolio and background risk: an exact and an approximated solution," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 249-265, October.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Munk, Claus & Sørensen, Carsten, 2010. "Dynamic asset allocation with stochastic income and interest rates," Journal of Financial Economics, Elsevier, vol. 96(3), pages 433-462, June.
    8. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    9. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    10. Isabelle Bajeux-Besnainou & James V. Jordan & Roland Portait, 2003. "Dynamic Asset Allocation for Stocks, Bonds, and Cash," The Journal of Business, University of Chicago Press, vol. 76(2), pages 263-288, April.
    11. de Menil, Georges, 2005. "Why should the portfolios of mandatory, private pension funds be captive? (The foreign investment question)," Journal of Banking & Finance, Elsevier, vol. 29(1), pages 123-141, January.
    12. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    13. Ma, Qing-Ping, 2011. "On "optimal pension management in a stochastic framework" with exponential utility," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 61-69, July.
    14. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    15. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    16. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2000. "Optimal investment strategies in a CIR framework," ULB Institutional Repository 2013/7594, ULB -- Universite Libre de Bruxelles.
    17. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    18. Tiong, Serena, 2013. "Pricing inflation-linked variable annuities under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 77-86.
    19. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    20. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    21. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    22. Jarrow, Robert A & Turnbull, Stuart M, 1998. "A Unified Approach for Pricing Contingent Claims on Multiple Term Structures," Review of Quantitative Finance and Accounting, Springer, vol. 10(1), pages 5-19, January.
    23. Kaushik I. Amin & Robert A. Jarrow, 2008. "Pricing foreign currency options under stochastic interest rates," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 14, pages 307-326, World Scientific Publishing Co. Pte. Ltd..
    24. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    25. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2004. "Optimal design of the guarantee for defined contribution funds," ULB Institutional Repository 2013/7602, ULB -- Universite Libre de Bruxelles.
    26. Tang, Mei-Ling & Chen, Son-Nan & Lai, Gene C. & Wu, Ting-Pin, 2018. "Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 87-104.
    27. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todor Stoilov & Krasimira Stoilova, 2022. "An Algorithm for Business Management Based on Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Mei-Ling & Chen, Son-Nan & Lai, Gene C. & Wu, Ting-Pin, 2018. "Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 87-104.
    2. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    3. Pengyu Wei & Charles Yang, 2023. "Optimal investment for defined-contribution pension plans under money illusion," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 729-753, August.
    4. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    5. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    6. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    7. Paolo BATTOCCHIO, 2002. "Optimal Portfolio Strategies with Stochastic Wage Income : The Case of A defined Contribution Pension Plan," LIDAM Discussion Papers IRES 2002005, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    8. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    9. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    10. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    11. Katarzyna Romaniuk, 2007. "The optimal asset allocation of the main types of pension funds: a unified framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 113-128, December.
    12. Liang, Zongxia & Ma, Ming, 2015. "Optimal dynamic asset allocation of pension fund in mortality and salary risks framework," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 151-161.
    13. Francesco, MENONCIN, 2002. "Investment Strategies in Incomplete Markets : Sufficient Conditions for a Closed Form Solution," LIDAM Discussion Papers IRES 2002033, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    14. Francesco, MENONCIN, 2003. "Optimal Real Consumption and Asset Allocation for a HARA Investor with Labour Income," LIDAM Discussion Papers IRES 2003015, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    15. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    16. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    17. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.
    18. Ankush Agarwal & Christian-Oliver Ewald & Yongjie Wang, 2023. "Hedging longevity risk in defined contribution pension schemes," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    19. Francesco, MENONCIN, 2002. "Investment Strategies for HARA Utility Function : A General Algebraic Approximated Solution," LIDAM Discussion Papers IRES 2002034, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    20. Hainaut, Donatien & Devolder, Pierre, 2007. "Management of a pension fund under mortality and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 134-155, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2468-:d:863741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.