IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v68y2020icp131-149.html
   My bibliography  Save this article

A study of the differences among representative investment strategies

Author

Listed:
  • Huang, Hong-Chih
  • Lee, Yung-Tsung

Abstract

This study compares the differences and efficiencies of investment strategies among anticipative and adaptive models using three representative decision approaches: the static approach (SA), semidynamic strategy (or re-assess by static approach, Re-SA), and dynamic programming (DP). We show that each approach has individual merits and weaknesses. A DP strategy may allow for relatively aggressive decisions because of opportunities to adapt the decisions later. However, that strategy may result in a serious downside risk. The suboptimal adaptive strategy, Re-SA, acts as a good proxy for the DP strategy. Therefore, both SA and Re-SA are important tools for addressing asset allocation problems.

Suggested Citation

  • Huang, Hong-Chih & Lee, Yung-Tsung, 2020. "A study of the differences among representative investment strategies," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 131-149.
  • Handle: RePEc:eee:reveco:v:68:y:2020:i:c:p:131-149
    DOI: 10.1016/j.iref.2020.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056020300538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2020.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    2. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    3. Larsen, Linda Sandris, 2010. "Optimal investment strategies in an international economy with stochastic interest rates," International Review of Economics & Finance, Elsevier, vol. 19(1), pages 145-165, January.
    4. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    5. Jim Musumeci & Joe Musumeci, 1999. "A Dynamic-Programming Approach to Multiperiod Asset Allocation," Journal of Financial Services Research, Springer;Western Finance Association, vol. 15(1), pages 5-21, February.
    6. Hainaut, Donatien & Devolder, Pierre, 2007. "Management of a pension fund under mortality and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 134-155, July.
    7. Huang, Hong-Chih & Cairns, Andrew J.G., 2006. "On the control of defined-benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 113-131, February.
    8. Emms, P. & Haberman, S., 2007. "Asymptotic and numerical analysis of the optimal investment strategy for an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 113-134, January.
    9. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    10. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    11. Hurlimann, Werner, 2002. "On the accumulated aggregate surplus of a life portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 27-35, February.
    12. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    13. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    14. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    15. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    16. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    17. Huang, Hong-Chih & Lee, Yung-Tsung, 2010. "Optimal asset allocation for a general portfolio of life insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 271-280, April.
    18. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    19. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    20. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    21. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    22. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    23. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
    24. Munk, Claus & Sorensen, Carsten & Nygaard Vinther, Tina, 2004. "Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?," International Review of Economics & Finance, Elsevier, vol. 13(2), pages 141-166.
    25. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    26. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, San-Lin & Hung, Mao-Wei & Wei, Tzu-Wen & Yeh, Chung-Ying, 2024. "Strategic asset allocation with distorted beliefs," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 804-831.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    2. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    3. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    4. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    5. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    6. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    7. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    8. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    9. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    10. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    11. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    12. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    13. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.
    14. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    15. Francesco Menoncin & Elena Vigna, 2013. "Mean-variance target-based optimisation in DC plan with stochastic interest rate," Carlo Alberto Notebooks 337, Collegio Carlo Alberto.
    16. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    17. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    18. Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
    19. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    20. Yao, Haixiang & Chen, Ping & Li, Xun, 2016. "Multi-period defined contribution pension funds investment management with regime-switching and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 103-113.

    More about this item

    Keywords

    Investment strategy; Anticipative model; Adaptive model; Static approach; Dynamic approach;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:68:y:2020:i:c:p:131-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.