IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v09y2006i02ns0219024906003548.html
   My bibliography  Save this article

Does The Application Of Innovative Internal Models Diminish Regulatory Capital?

Author

Listed:
  • LAMPROS KALYVAS

    (Bank of Greece, Department for the Supervision of Credit and Financial Institutions, Risk Analysis and Supervisory Techniques Division, 3, Amerikis Str., 10564, Athens, Greece)

  • ATHANASIOS SFETSOS

    (EREL, INT-RP, NCSR Demokritos, Patr. Grigoriou & Neapoleos, 15310, Agia Paraskevi, Greece)

Abstract

The broad spectrum and the increased complexity of financial products that compose modern portfolios have forced credit and financial institutions to focus on innovative and more effective ways of estimating market risks. These new approaches, very often, prove to be more conservative compared to traditional approaches in terms of market risk quantification. On the other hand, according to the Basel Committee evaluation framework, this conservatism is rewarded with lower multiplication factors when calculations of capital requirements take place. The present study elaborates on the comparison of several Value-at-Risk (VaR) methodologies based on the capital requirements they provide according to the Basel Committee regulatory framework.

Suggested Citation

  • Lampros Kalyvas & Athanasios Sfetsos, 2006. "Does The Application Of Innovative Internal Models Diminish Regulatory Capital?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 217-226.
  • Handle: RePEc:wsi:ijtafx:v:09:y:2006:i:02:n:s0219024906003548
    DOI: 10.1142/S0219024906003548
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024906003548
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024906003548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Fallon, 1996. "Calculating Value-at-Risk," Center for Financial Institutions Working Papers 96-49, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Evis Këllezi & Manfred Gilli, 2000. "Extreme Value Theory for Tail-Related Risk Measures," FAME Research Paper Series rp18, International Center for Financial Asset Management and Engineering.
    3. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Sommacampagna, 2002. "Stima del Value-at-Risk con il Filtro di Kalman," Rivista di Politica Economica, SIPI Spa, vol. 92(6), pages 147-174, November-.
    2. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    3. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    4. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    5. Pacicco, Fausto & Vena, Luigi & Venegoni, Andrea, 2020. "Communication and financial supervision: How does disclosure affect market stability?," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 1-15.
    6. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    7. Novak, S.Y. & Beirlant, J., 2006. "The magnitude of a market crash can be predicted," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 453-462, February.
    8. Bentes, Sónia R., 2014. "Measuring persistence in stock market volatility using the FIGARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 190-197.
    9. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    10. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    11. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    12. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    13. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    14. Agata Gemzik-Salwach, 2012. "The Use Of A Value At Risk Measure For The Analysis Of Bank Interest Margins," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 8(4), pages 15-29, February.
    15. Emilio Cardona & Andrés Mora-Valencia & Daniel Velásquez-Gaviria, 2019. "Testing expected shortfall: an application to emerging market stock indices," Risk Management, Palgrave Macmillan, vol. 21(3), pages 153-182, September.
    16. Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Fabozzi, Frank J., 2013. "CVaR sensitivity with respect to tail thickness," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 977-988.
    17. Matthew Pritsker, 1996. "Evaluating Value-at-Risk Methodologies: Accuracy versus Computational Time," Center for Financial Institutions Working Papers 96-48, Wharton School Center for Financial Institutions, University of Pennsylvania.
    18. Dongming Zhu & John W. Galbraith, 2009. "Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution," CIRANO Working Papers 2009s-24, CIRANO.
    19. Xing Yu, 2012. "The optimal portfolio model based on multivariate t distribution with linear weighted sum method," E3 Journal of Business Management and Economics., E3 Journals, vol. 3(1), pages 044-047.
    20. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:09:y:2006:i:02:n:s0219024906003548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.