IDEAS home Printed from https://ideas.repec.org/a/pal/risman/v21y2019i3d10.1057_s41283-018-0046-z.html
   My bibliography  Save this article

Testing expected shortfall: an application to emerging market stock indices

Author

Listed:
  • Emilio Cardona

    (Universidad de los Andes, School of Management)

  • Andrés Mora-Valencia

    (Universidad de los Andes, School of Management)

  • Daniel Velásquez-Gaviria

    (Universidad EAFIT
    Instituto Tecnológico Metropolitano-ITM)

Abstract

In a recent paper, Acerbi and Székely (Risk Magazine, 76–81, 2014) presented three methods to test expected shortfall, and this is the first empirical application of that paper on emerging markets. We employ daily stock index returns from the Morgan Stanley Capital International Inc. Emerging Markets Index covering the 2000–2015 period, extending Acerbi and Székely (Risk Magazine, 76–81, 2014) results to derive the significance thresholds for the Student’s skewed-t distribution using two testing methods. We find that the thresholds for the Z1 Test and Z2 Test for skewed-t distribution are similar to the values obtained by Acerbi and Székely for Student’s t distribution. Therefore, the Z1 and Z2 thresholds are invariant to the skewed-t-shaped parameter values found in the emerging market stock indices. Empirical results show outperformance of Student’s skewed-t and Student’s t distributions over Gaussian distribution.

Suggested Citation

  • Emilio Cardona & Andrés Mora-Valencia & Daniel Velásquez-Gaviria, 2019. "Testing expected shortfall: an application to emerging market stock indices," Risk Management, Palgrave Macmillan, vol. 21(3), pages 153-182, September.
  • Handle: RePEc:pal:risman:v:21:y:2019:i:3:d:10.1057_s41283-018-0046-z
    DOI: 10.1057/s41283-018-0046-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41283-018-0046-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41283-018-0046-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    3. Turan G. Bali & Panayiotis Theodossiou, 2008. "Risk Measurement Performance of Alternative Distribution Functions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 411-437, June.
    4. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    5. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    6. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    7. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    8. Rossignolo, Adrian F. & Fethi, Meryem Duygun & Shaban, Mohamed, 2012. "Value-at-Risk models and Basel capital charges," Journal of Financial Stability, Elsevier, vol. 8(4), pages 303-319.
    9. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
    10. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    11. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    12. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Degiannakis, Stavros, 2004. "Volatility Forecasting: Evidence from a Fractional Integrated Asymmetric Power ARCH Skewed-t Model," MPRA Paper 96330, University Library of Munich, Germany.
    15. de Jesús, Raúl & Ortiz, Edgar & Cabello, Alejandra, 2013. "Long run peso/dollar exchange rates and extreme value behavior: Value at Risk modeling," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 139-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adnan Safi & Yingying Chen & Abdul Qayyum & Salman Wahab, 2022. "Business strategy, market power, and stock price crash risk: Evidence from China," Risk Management, Palgrave Macmillan, vol. 24(1), pages 34-54, March.
    2. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    2. Mark H. A. Davis, 2014. "Verification of internal risk measure estimates," Papers 1410.4382, arXiv.org, revised Nov 2015.
    3. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    4. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    5. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    6. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    7. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    8. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    9. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    10. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    11. Fernanda Maria Müller & Thalles Weber Gössling & Samuel Solgon Santos & Marcelo Brutti Righi, 2024. "A comparison of Range Value at Risk (RVaR) forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 509-543, April.
    12. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    13. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    14. Jakobsons Edgars, 2016. "Scenario aggregation method for portfolio expectile optimization," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 51-65, September.
    15. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    16. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    17. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    18. Marcell Béli & Kata Váradi, 2017. "A possible methodology for determining the initial margin," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(2), pages 119-147.
    19. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    20. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:21:y:2019:i:3:d:10.1057_s41283-018-0046-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.