IDEAS home Printed from https://ideas.repec.org/p/wop/pennin/96-49.html
   My bibliography  Save this paper

Calculating Value-at-Risk

Author

Listed:
  • William Fallon

Abstract

The market risk of a portfolio refers to the possibility of financial loss due to the joint movement of systematic economic variables such as interest and exchange rates. Quantifying market risk is important to regulators in assessing solvency and to risk managers in allocating scarce capital. Moreover, market risk is often the central risk faced by financial institutions. The standard method for measuring market risk places a conservative, one-sided confidence interval on portfolio losses for short forecast horizons. This bound on losses is often called capital-at-risk or value-at-risk (VAR), for obvious reasons. Calculating the VAR or any similar risk metric requires a probability distribution of changes in portfolio value. In most risk management models, this distribution is derived by placing assumptions on (1) how the portfolio function is approximated, and (2) how the state variables are modeled. Using this framework, we first review four methods for measuring market risk. We then develop and illustrate two new market risk measurement models that use a second-order approximation to the portfolio function and a multivariate GARCH(l,1) model for the state variables. We show that when changes in the state variables are modeled as conditional or unconditional multivariate normal, first-order approximations to the portfolio function yield a univariate normal for the change in portfolio value while second-order approximations yield a quadratic normal. Using equity return data and a hypothetical portfolio of options, we then evaluate the performance of all six models by examining how accurately each calculates the VAR on an out-of-sample basis. We find that our most general model is superior to all others in predicting the VAR. In additional empirical tests focusing on the error contribution of each of the two model components, we find that the superior performance of our most general model is largely attributable to the use of the second-order approximation, and that the first-order approximations favored by practitioners perform quite poorly. Empirical evidence on the modeling of the state variables is mixed but supports usage of a model which reflects non-linearities in state variable return distributions. This paper was presented at the Financial Institutions Center's October 1996 conference on "

Suggested Citation

  • William Fallon, 1996. "Calculating Value-at-Risk," Center for Financial Institutions Working Papers 96-49, Wharton School Center for Financial Institutions, University of Pennsylvania.
  • Handle: RePEc:wop:pennin:96-49
    as

    Download full text from publisher

    File URL: http://fic.wharton.upenn.edu/fic/papers/96/9649.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    3. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    4. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    5. Dimson, Elroy & Marsh, Paul, 1995. "Capital Requirements for Securities Firms," Journal of Finance, American Finance Association, vol. 50(3), pages 821-851, July.
    6. Schwert, G William & Seguin, Paul J, 1990. "Heteroskedasticity in Stock Returns," Journal of Finance, American Finance Association, vol. 45(4), pages 1129-1155, September.
    7. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    8. Robert C. Merton & André Perold, 1993. "Theory Of Risk Capital In Financial Firms," Journal of Applied Corporate Finance, Morgan Stanley, vol. 6(3), pages 16-32, September.
    9. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    14. Hsieh, David A., 1993. "Implications of Nonlinear Dynamics for Financial Risk Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 41-64, March.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lampros Kalyvas & Athanasios Sfetsos, 2006. "Does The Application Of Innovative Internal Models Diminish Regulatory Capital?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 217-226.
    2. Matthew Pritsker, 1996. "Evaluating Value-at-Risk Methodologies: Accuracy versus Computational Time," Center for Financial Institutions Working Papers 96-48, Wharton School Center for Financial Institutions, University of Pennsylvania.
    3. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    4. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    5. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    6. Anthony M. Santomero, 1997. "Commercial Bank Risk Management: An Analysis of the Process," Center for Financial Institutions Working Papers 95-11, Wharton School Center for Financial Institutions, University of Pennsylvania.
    7. Agata Gemzik-Salwach, 2012. "The Use Of A Value At Risk Measure For The Analysis Of Bank Interest Margins," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 8(4), pages 15-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian H. Boyer & Michael S. Gibson, 1997. "Evaluating forecasts of correlation using option pricing," International Finance Discussion Papers 600, Board of Governors of the Federal Reserve System (U.S.).
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    3. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    4. Hong, Yongmiao, 2001. "A test for volatility spillover with application to exchange rates," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 183-224, July.
    5. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    6. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
    7. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    8. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    9. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    10. Piotr Fiszeder & Witold Orzeszko, 2012. "Nonparametric Verification of GARCH-Class Models for Selected Polish Exchange Rates and Stock Indices," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(5), pages 430-449, November.
    11. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    12. de Goeij, Peter & Marquering, Wessel, 2009. "Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 318-329, March.
    13. Jose A. Lopez & Christian Walter, 1997. "Is implied correlation worth calculating? Evidence from foreign exchange options and historical data," Research Paper 9730, Federal Reserve Bank of New York.
    14. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    15. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    16. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.
    17. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    18. Kocenda, Evzen & Valachy, Juraj, 2006. "Exchange rate volatility and regime change: A Visegrad comparison," Journal of Comparative Economics, Elsevier, vol. 34(4), pages 727-753, December.
    19. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    20. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennin:96-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fiupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.